首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101947篇
  免费   8474篇
  国内免费   4450篇
电工技术   5820篇
技术理论   6篇
综合类   6451篇
化学工业   16950篇
金属工艺   6329篇
机械仪表   7073篇
建筑科学   8326篇
矿业工程   3523篇
能源动力   2964篇
轻工业   6391篇
水利工程   1717篇
石油天然气   7507篇
武器工业   832篇
无线电   11070篇
一般工业技术   11893篇
冶金工业   4966篇
原子能技术   1029篇
自动化技术   12024篇
  2024年   489篇
  2023年   1875篇
  2022年   3290篇
  2021年   4485篇
  2020年   3483篇
  2019年   2810篇
  2018年   3022篇
  2017年   3397篇
  2016年   3167篇
  2015年   4265篇
  2014年   5053篇
  2013年   5991篇
  2012年   6485篇
  2011年   6940篇
  2010年   5913篇
  2009年   5631篇
  2008年   5460篇
  2007年   5181篇
  2006年   5523篇
  2005年   4816篇
  2004年   3035篇
  2003年   2886篇
  2002年   2713篇
  2001年   2452篇
  2000年   2373篇
  1999年   2674篇
  1998年   2110篇
  1997年   1747篇
  1996年   1724篇
  1995年   1424篇
  1994年   1163篇
  1993年   745篇
  1992年   659篇
  1991年   441篇
  1990年   355篇
  1989年   303篇
  1988年   229篇
  1987年   151篇
  1986年   122篇
  1985年   70篇
  1984年   54篇
  1983年   44篇
  1982年   41篇
  1981年   31篇
  1980年   26篇
  1979年   17篇
  1978年   1篇
  1965年   1篇
  1959年   3篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Guo  Chenchen  Zhao  Xiaoming  Zou  Qiang 《Applied Intelligence》2022,52(10):11394-11406
Applied Intelligence - In recent years, person re-identification (re-ID) has become a widespread research topic that focuses on retrieving target pedestrians from a set of images, typically taken...  相似文献   
992.
Wang  Bilin  Wang  Shengsheng  Zhang  Zhe  Zhao  Xin  Fu  Zihao 《Applied Intelligence》2022,52(12):14070-14084
Applied Intelligence - Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a label-rich source domain to an unlabeled target domain with a different but related distribution....  相似文献   
993.
The combination of directional solidification and selective dissolution was applied to fabricate tungsten (W) wires and porous NiAl matrix. A NiAl–W pseudobinary eutectic alloy with 1.5?at.% tungsten was directionally solidified in a Bridgman-type oven at 1700°C. Results confirmed that the relationships of the growth rate with the interfibrous spacing and diameter of W fibrous phases in the directionally solidified samples are in accordance with the Jackson and Hunt (J?H) model. Afterward, the NiAl matrix was selectively dissolved in an HCl:H2O2 solution to reveal W wires, which present various three-dimensional (3D) morphologies at different growth rates. The W fibrous phases in the NiAl–W alloy samples were then selectively removed with a mixed etchant of ammonium acetate to form a porous NiAl matrix at a constant potential. Dynamic corrosion curves revealed that etching W from the NiAl matrix was inhibited after 2–3?h. The porous structures of NiAl after removing W phases are linked to the 3D morphologies of W fibrous phases embedded in the NiAl matrix. The aspect ratio of W wires and the structures of porous NiAl can be adjusted by selecting the process parameters of this combined technology.  相似文献   
994.
Temperature change, as a common kind of internal perturbation performed on granular materials, has a significant effect on the bulk properties of granular materials. However, few studies on thermally-induced shakedown under a long-term thermal cycling were reported. In this work, the discrete element method was used to give insight into the thermally-induced shakedown on the fabric and stress states within non-cohesive, frictional granular assemblies. Assemblies were submitted to thermal cycling at a stationary boundary condition after experiencing a one-dimensional compression. Evolution of coordination number, entropy and anisotropy was investigated as well as boundary forces and contact forces. At the same time, effects of the heating rate, the initial vertical load and the magnitude of temperature change were examined. It demonstrates that thermal cycling induces a significant force relaxation within granular materials, while the corresponding granular fabric has a small change. In addition, the entropy and anisotropy decreases with thermal cycling. Moreover, the initial vertical load can constrain the development of thermally-induced fabric change, thereby limiting force relaxation to some degree. Both high heating rate and larger magnitudes of temperature change contribute to more significant force relaxation. However, they cause smaller fabric changes even though they provide larger perturbations.  相似文献   
995.
996.
The significance of bionanomotors in nanotechnology is analogous to mechanical motors in daily life. Here the principle and approach for designing and constructing biomimetic nanomotors with continuous single‐directional motion are reported. This bionanomotor is composed of a dodecameric protein channel, a six‐pRNA ring, and an ATPase hexamer. Based on recent elucidations of the one‐way revolving mechanisms of the phi29 double‐stranded DNA (dsDNA) motor, various RNA and protein elements are designed and tested by single‐molecule imaging and biochemical assays, with which the motor with active components has been constructed. The motor motion direction is controlled by three operation elements: (1) Asymmetrical ATPase with ATP‐interacting domains for alternative DNA binding/pushing regulated by an arginine finger in a sequential action manner. The arginine finger bridges two adjacent ATPase subunits into a non‐covalent dimer, resulting in an asymmetrical hexameric complex containing one dimer and four monomers. (2) The dsDNA translocation channel as a one‐way valve. (3) The hexameric pRNA ring geared with left‐/right‐handed loops. Assessments of these constructs reveal that one inactive subunit of pRNA/ATPase is sufficient to completely block motor function (defined as K = 1), implying that these components work sequentially based on the principle of binomial distribution and Yang Hui's triangle.  相似文献   
997.
Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current–voltage hysteresis. Herein, it is reported that yttrium‐doped tin dioxide (Y‐SnO2) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well‐aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y‐SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y‐SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady‐state efficiency of 16.25%. The results suggest that low‐temperature hydrothermal‐synthesized Y‐SnO2 NSA is a promising ESL for fabricating efficient and hysteresis‐less PSC.  相似文献   
998.
999.
It is of great importance to investigate the crystallization of organometallic perovskite from solution for enhancing performance of perovskite solar cells. Here, this study develops a facile method for in situ observation of crystallization and growth of the methylammonium lead iodide (MAPbI3) perovskite from microdroplets ejected by an alternating viscous and inertial force jetting method. It is found that there are two crystallization modes when MAPbI3 grows from the CH3NH3I (MAI)/PbI2/N,N‐dimethylformamide (DMF) solution: needle precursors and granular perovskites. Generally, needle Lewis adduct of MAPbI3·DMF tends to nucleate and grow from the solution due to low solubility of PbI2. The growth of MAPbI3·DMF depends on both the concentration of MAI and temperature. It tends to form large perovskite domains on substrates at high temperature. The MAPbI3·DMF coverts to nanocrystalline perovskite due to lattice shrinkage when DMF molecules escape from the Lewis adduct. Granular perovskite can also directly nucleate from the solution at high concentration of MAI due to compositional segregation.  相似文献   
1000.
Control of the precise lattice alignment of monolayer molybdenum disulfide (MoS2) on hexagonal boron nitride (h‐BN) is important for both fundamental and applied studies of this heterostructure but remains elusive. The growth of precisely aligned MoS2 domains on the basal plane of h‐BN by a low‐pressure chemical vapor deposition technique is reported. Only relative rotation angles of 0° or 60° between MoS2 and h‐BN basal plane are present. Domains with same orientation stitch and form single‐crystal, domains with different orientations stitch and from mirror grain boundaries. In this way, the grain boundary is minimized and a continuous film stitched by these two types of domains with only mirror grain boundaries is obtained. This growth strategy is also applicable to other 2D materials growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号