首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28813篇
  免费   2515篇
  国内免费   1479篇
电工技术   1792篇
技术理论   1篇
综合类   2041篇
化学工业   4797篇
金属工艺   1522篇
机械仪表   1840篇
建筑科学   2250篇
矿业工程   936篇
能源动力   814篇
轻工业   2521篇
水利工程   555篇
石油天然气   1872篇
武器工业   216篇
无线电   2833篇
一般工业技术   3074篇
冶金工业   1346篇
原子能技术   331篇
自动化技术   4066篇
  2024年   148篇
  2023年   528篇
  2022年   939篇
  2021年   1248篇
  2020年   893篇
  2019年   757篇
  2018年   863篇
  2017年   962篇
  2016年   852篇
  2015年   1143篇
  2014年   1511篇
  2013年   1847篇
  2012年   1914篇
  2011年   2187篇
  2010年   1878篇
  2009年   1820篇
  2008年   1824篇
  2007年   1653篇
  2006年   1578篇
  2005年   1411篇
  2004年   944篇
  2003年   777篇
  2002年   735篇
  2001年   641篇
  2000年   633篇
  1999年   595篇
  1998年   472篇
  1997年   432篇
  1996年   368篇
  1995年   296篇
  1994年   266篇
  1993年   178篇
  1992年   157篇
  1991年   88篇
  1990年   73篇
  1989年   39篇
  1988年   49篇
  1987年   29篇
  1986年   17篇
  1985年   8篇
  1984年   14篇
  1983年   10篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1959年   4篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current–voltage hysteresis. Herein, it is reported that yttrium‐doped tin dioxide (Y‐SnO2) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well‐aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y‐SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y‐SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady‐state efficiency of 16.25%. The results suggest that low‐temperature hydrothermal‐synthesized Y‐SnO2 NSA is a promising ESL for fabricating efficient and hysteresis‐less PSC.  相似文献   
192.
Inspired by mussel‐adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self‐polymerization process of dopamine is time‐consuming and the coatings of PDA are not reusable. Herein, a reusable and time‐saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron–hole pairs generated from photo‐electrocatalysis and transfer the captured electrons to participate in the photo‐electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as‐prepared Pt@TiO2 NTA composites exhibit surface‐enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV‐assisted self‐cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel‐inspired electropolymerization strategy and the fast EPD‐reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.  相似文献   
193.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   
194.
The ternary strategy for incorporating multiple photon-sensitive components into a single junction has emerged as an effective method for optimizing the nanoscale morphology and improving the device performance of organic solar cells (OSCs).In this study,efficient and stable ternary OSCs were achieved by introducing the small-molecule dye (5E,5'E)-5,5'-(4',4″-(1,2-diphenylethene-1,2-diyl)bis(biphenyl-4',4-diyl))bis(methan-1-yl-1-ylidene)bis(3-ethyl-2-thioxothia zolidin-4-one) (BTPERn) into poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiopheneco-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) blend films processed using a 1,8-diiodooctane (DIO)-free solvent.The incorporation of BTPE-Rn enhanced the short-circuit current density and fill factor of the ternary OSCs compared with those of binary OSCs.An investigation of the optical,electronic,and morphological properties of the ternary blends indicated that the third component of BTPE-Rn not only promoted the photon utilization of blends through the energy-transfer process but also improved the electron mobility of the blends owing to the fullerene-rich nanophase optimization.More importantly,this ternary strategy of utilizing a small-molecule dye to replace the photounstable DIO additive enhanced the operational stability of the OSCs.  相似文献   
195.
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers.In this paper,two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities.This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision.Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles.The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher sidemode suppression ratio and lower threshold.The mechanism that led to this enhancement has been described in detail.  相似文献   
196.
Fluctuations in market demands, increased mobility of workers and changing employment practices as well as companies’ increased respect for individual differences of workers have led to the phenomenon that workers with large efficiency differences work together in the same production line in manufacturing companies. In a traditional travelling production line (TrPL), low-efficiency workers can block the work of higher efficiency workers. To increase the production capacity of a travelling line composed of workers with different efficiencies, a chasing-overtaking mechanism was established and used to achieve line production capacity and efficiency improvement. A formula to calculate the production capacity of two workers with different efficiencies was derived and validated. A simulation performed to analyse the differences between the ‘chasing-overtaking’ production line (COPL), TrPL and the classic ‘bucket brigade’ production line (BBPL) with respect to production capacity, working time utilisation and equipment utilisation demonstrated that the COPL provides good production capacity and adaptability to worker differences. Finally, the statistical analysis verified that the COPL has a higher production capacity, average worker working hour utilisation rate and equipment utilisation rate than the BBPL and TrPL.  相似文献   
197.
To effectively analyse and evaluate the performances of closed-loop automated material handling system (AMHS) with shortcut and blocking in semiconductor wafer fabrication system, a modified Markov chain model (MMCM) has been proposed. The system characteristics, such as vehicle blockage and system’s shortcut configuration, are well considered in the MMCM. The state space explosion problem and computational challenge due to the increase of AMHS scale can be effectively eliminated. With production data from Interbay material handling system of a 300-mm semiconductor wafer fabrication line, the proposed MMCM is compared with simulation analysis model. The results demonstrate that the proposed MMCM is an effective modelling methodology for AMHS’s performance analysis at system design stage.  相似文献   
198.
Under abnormal conditions, timely and effective decisions of system recovery and protective measures are of great significance for safety‐critical systems. The knowledge of the roles that network nodes play in the spreading process is crucial for developing efficient maintenance decisions; for singling out and preferential control, the ‘pivotal spreaders’ may be a way to maximize the chances to timely hinder the fault pervasion. Inspired by the inhomogeneous topological nature of a complex fault propagation network, this study is devoted to exploring the spreading capabilities of nodes regarding both structural connectivity and causal influence strength, so as to provide decisions of preferential recovery actions under specific fault scenarios. Specifically, the dynamic betweenness centrality and nonsymmetrical entropy are incorporated to adaptively measure the system‐wide fault diffusion risk of a set of controllable fault events. In order to model the dynamics and uncertainties involved in the complex fault spreading process, we introduce the model of a dynamic uncertain causality graph, based on which solutions of time‐varying structure decomposition and causality reduction are adopted to improve the reasoning efficiency. Verification experiments consisting of simulated calculation cases and generator faults of a nuclear power plant show empirically the effectiveness and applicability of this method in large‐scale engineering practice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
199.
200.
AZO powders were sensitized through chemisorption method by octa-iso-pentyloxy phthalocyanine lead and characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results showed that after sensitization process AZO photo physical properties improved greatly in visible regions. Photocatalytic degradation of methylene blue was studied under visible irradiation in aqueous solution and the pseudo first order model was used to obtain kinetic information of the photocatalytic degradation. The results indicated that photocatalytic activities of PbPc(iso-PeO)8-AZO were better than of AZO powders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号