首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   62篇
  国内免费   2篇
电工技术   3篇
综合类   2篇
化学工业   324篇
金属工艺   38篇
机械仪表   22篇
建筑科学   24篇
矿业工程   2篇
能源动力   41篇
轻工业   56篇
水利工程   5篇
石油天然气   2篇
无线电   71篇
一般工业技术   163篇
冶金工业   19篇
原子能技术   2篇
自动化技术   217篇
  2023年   7篇
  2022年   51篇
  2021年   90篇
  2020年   33篇
  2019年   41篇
  2018年   47篇
  2017年   25篇
  2016年   46篇
  2015年   33篇
  2014年   51篇
  2013年   74篇
  2012年   53篇
  2011年   61篇
  2010年   37篇
  2009年   51篇
  2008年   40篇
  2007年   36篇
  2006年   29篇
  2005年   20篇
  2004年   19篇
  2003年   20篇
  2002年   20篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1968年   1篇
排序方式: 共有991条查询结果,搜索用时 15 毫秒
31.
The activity of isotactic polypropylene (iPP) nucleating additives during shear flow of composite materials is still not entirely explained. In current work the sol-gel method was employed to synthesize MgO·SiO2 filler, surface-modified with trivalent lanthanum. The crystallization of commercial iPP in the presence of 0.5% by weight La3+ modified or unmodified silicates was analyzed. The wide angle X-ray scattering analysis proved that the presence of even small amount of filler influences significantly on supermolecular structure of iPP. The results of microscope observations confirmed that the lanthanum-modified filler shows the nucleating ability for iPP. In that case a significant reduction of crystallization induction time was noticed. The investigation of iPP crystallization in composites after shear treatment confirmed that the increase of shear rate reduces the nucleating ability of additives. Moreover, the flow of filler particles during shearing may impede the shear-induced crystallization phenomenon.  相似文献   
32.
Arborescent polyoxyethylene of high molar mass (2×105 g/mol) and narrow molar mass distribution was synthesized in a three-stage process. In the first stage a triblock copolymer of ethylene oxide (central block, DP ca. 90) and 2,3-epoxypropanol-1 (short flanking blocks, DP ca. 5) was synthesized. The potassium alcoholate derived from this copolymer was used to initiate the polymerization of ethylene oxide and the subsequent addition of protected glycidol (1-etoxyethyl glycidyl ether). After deprotection the short polyglycidol blocks were used as branching units for the next generation. Repeated step by step process leads to the ‘pom-pom like’ branched polyoxyethylene macromolecules enriched with the reactive hydroxyl groups in the outer shell. The branched structure of the obtained polymers was evidenced by the size exclusion chromatography and NMR spectroscopy.  相似文献   
33.
The objective of this study was to analyse how macromolecular structure of polylactides influences their properties and degradation rate. To achieve this, novel 2- and 4-armed PDLLA and PLLA (noted as 2b and 4b) were synthesized by ring-opening method. 1,4-butanediol and pentaerythritol were used as initiators and stannous octoate was used as catalyst. The obtained polymers were investigated in terms of molecular weight by size exclusion chromatography, thermal properties by differential scanning calorimetry and thermogravimetry, and hydrophilicity by the contact angle measurements. The in vitro degradation test was carried out in PBS solution at 37 °C by means of the mass loss, water uptake, molecular weight and thermal properties changes. The branched polylactides including 2bPDLLA, 4bPDLLA, 2bPLLA and 4bPLLA were successfully synthesized and the average molecular weights were around 40-45 kDa. The numbers of arms in each polymer just slightly influenced the thermal properties and the contact angle. The crystallinity of 4bPLLA was 23 %, whereas for 2bPLLA it was 41 %. The degradation rates of both 2b and 4bPLLA were similar and the degradation process was similar only during first 7 weeks. After this period, the degradation rate of 4bPDLLA increased. Consequently, thermal properties and degradation profiles of the branched polymers would depend on plural factors, such as chain length and crystallinity in branched structure.  相似文献   
34.
RCAS1 is a protein that participates in regulation of the tumor microenvironment and its immune responses, all in order to evade the immune system. The aim of this study was to analyze RCAS1 expression in urothelial bladder cancer cells (and in fibroblasts and macrophages of the tumor stroma) and its relationship with the histological pattern of malignancy. Eighty-three postcystectomy patients were enrolled. We analyzed the histological maturity (grade), progress (pT stage), tissue invasion type (TIT), nonclassic differentiation number (NDN), and the ability to metastasize (pN). The expression of RCAS1 protein was analyzed by immunohistochemistry. Indicators of histological malignancy were observed solely in association with the RCAS1 expression in cells in the border parts (BPs) of the tumor. Histological malignancy of the tumor, indicated by the pT and pN, and metastasis-free survival time, correlated significantly with RCAS1 expression in tumor neoplastic cells, whereas malignancy determined by grade, TIT, and NDN correlated with RCAS1 expression in fibroblasts and macrophages in the tumor microenvironment. These findings suggest that the increased RCAS1 expression depends on its cellular source and that RCAS1 expression itself is a component of various signaling pathways. The immune escape occurs within the tumor BPs, where the increase in the RCAS1 expression occurs within tumor cells and stromal cells in its microenvironment. We conclude that the histological pattern of tumor malignancy, indicated by grade, TIT, NDN, pT, and pN is a morphological indicator of immune escape.  相似文献   
35.
Hydroxyapatite (HA) hybridized poly(N-isopropylacrylamide)-co-acrylic acid (PNIPAM-co-AAc) hydrogel on thermoplastic polyurethane (TPU) were successfully prepared via photocatalytic polymerization technique. Low temperature plasma processing of HMDSZ and O2 plasma were deposition on substrate. The HA/hydrogel were stabilized by HA of which the wettability was modified by calcium nitrate and ammonium phosphate dibasic. The HA gradually increases with the increase of time cycles. The deposition of organic silicone group by the HMDSZ on the TPU substrate is hydrophobic surface. When deposition of O2, the water contact angles (WCA) was changed to <10° and surface hydrophilicity. The materials were characterized by OM, SEM, FT-IR, XPS and XRD. The results showed that the NIPAM: AAc (1:1 mol) polymers possess macropores ranging from 2 to 20 μm, and their large numbers of carboxyl groups and hydroxyl groups result in a favorable adsorption capacity for HA. Swelling studies indicated that NIPAM: AAc (1:1 mol) was 446 ± 0.3%. This work provided a promising alternative method for the fabrication of polymer materials with tunable and interconnected pores structures for the HA.  相似文献   
36.
Nanoengineered biodegradable constructs based on synthetic and natural polymers enriched with hydroxyapatite (HA) nanoparticles have been found to mimic the extracellular matrix of bone tissue. The main objective of this study was to create biocomposite nanostructured scaffolds by incorporating collagen and HA nanoparticles into poly(L-lactic acid)-co-poly(?-caprolactone) by electrospinning. The fiber diameter of the composite PLCL/Col and PLCL/Col/HA fibers was smaller compared to PLCL. In vitro biocompatibility of the scaffolds studied using human fetal osteoblasts and EDX analysis showed high deposition of calcium on PLCL/Col/HA. The results shows that PLCL/Col/HA nanofibrous constructs have huge potential as substrates for bone regeneration.  相似文献   
37.
The promotion of Fischer-Tropsch catalysts 10%Co/Al2O3, 10%Co/SiO2, 10%Co/TiO2 by 0.5% Ru and the modification of supports by 8.5 wt% ZrO2 have been studied. The following properties: catalyst specific surface area as well as reducibility and dispersion of metallic phase were studied by different techniques: BET, TPR, and H2 chemisorption. The modification of supports by non-reducible ZrO2, results in a decrease of cobalt oxide reduction on Al2O3 and TiO2 but not on SiO2 supports. Additionally the enhancement of cobalt dispersion was found for all catalysts with ZrO2 modified supports. The impact of Ru promotion is likely due to the stabilization of applied supports, prevention or blockage of interaction between surface Co species and support and an increase in cobalt oxide reducibility to the catalytically active metallic cobalt phase.  相似文献   
38.
Improvements in the quality and yield of semiconductor devices will rely on characterization methods that are informative, nondestructive, convenient, easy to use, and inexpensive. Ideally, one would like to perform the characterization procedure at room temperature on entire wafers, possibly even before the structure is removed from the growth chamber. Because of their simplicity and proven ability, the contactless electro-modulation methods of photoreflectance and contactless electroreflectance are ideally suited for this purpose. Modulation spectroscopy has already been applied to examine such devices as heterojunction bipolar transistors, pseudomorphic high-electron-mobility transistors, quantum-well lasers, vertical cavity surface-emitting lasers, multiple-quantum-well infrared detectors, superlattice optical mirrors, resonant tunneling structures, solar cells, and metal-oxide-semiconductor configurations.  相似文献   
39.
The influence of silver and gold addition on the activity and physicochemical properties of supported Cu/CrAl3O6 catalysts was the aim of this work. The reduction of CrAl3O6 support shows only one reduction stage attributed to Cr (VI) species reduction originating from previously oxidized binary oxide. Supported copper catalysts reduce in one or two stages depending on copper concentration representing the reduction of copper oxide—CuO, copper oxide chemically combined with Cr(III) oxide as copper chromite—CuCr2O4 and Cr(VI) species originating from surface chromate ions CrO4 2?. Additionally, the introduction of silver into supported copper catalysts Cu/CrAl3O6 can led to the appearance of silver chromate phase. XRD investigations of support CrAl3O6 alone, supported copper and gold and silver promoted copper supported catalysts calcined at 400, 700 and 900 °C indicated the presence of highly amorphous alumina γ-Al2O3 like structure network in which some of cationic locations of aluminum were occupied by chromium atoms and small quantities of α-Cr2O3 phase. Additionally, for copper, silver–copper, and gold–copper supported catalysts the following oxide phases were distinguished: monometallic oxides CuO, Ag2O, binary oxides CuAl2O4, Ag2CrO4, CuCr2O4 and even ternary oxide CuAlCrO4. In the case of gold promoted copper supported catalysts metallic gold phase was detected. Activity tests carried out for these catalysts show that the most active was 20 wt.% Cu/CrAl3O6 catalyst. Promotion of copper catalysts by silver improves the activity in methanol synthesis, what can be assigned to silver chromate formation. The analogical gold chromate like formation was not confirmed.  相似文献   
40.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号