首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8052篇
  免费   412篇
  国内免费   4篇
电工技术   70篇
综合类   5篇
化学工业   1185篇
金属工艺   168篇
机械仪表   286篇
建筑科学   50篇
矿业工程   2篇
能源动力   165篇
轻工业   242篇
水利工程   11篇
无线电   749篇
一般工业技术   1123篇
冶金工业   4001篇
原子能技术   58篇
自动化技术   353篇
  2023年   50篇
  2022年   71篇
  2021年   121篇
  2020年   89篇
  2019年   134篇
  2018年   126篇
  2017年   161篇
  2016年   188篇
  2015年   150篇
  2014年   227篇
  2013年   274篇
  2012年   325篇
  2011年   369篇
  2010年   226篇
  2009年   277篇
  2008年   224篇
  2007年   179篇
  2006年   137篇
  2005年   120篇
  2004年   131篇
  2003年   141篇
  2002年   118篇
  2001年   80篇
  2000年   86篇
  1999年   206篇
  1998年   1296篇
  1997年   737篇
  1996年   478篇
  1995年   255篇
  1994年   221篇
  1993年   286篇
  1992年   58篇
  1991年   82篇
  1990年   67篇
  1989年   71篇
  1988年   78篇
  1987年   59篇
  1986年   43篇
  1985年   61篇
  1984年   11篇
  1983年   11篇
  1982年   21篇
  1981年   28篇
  1980年   32篇
  1979年   12篇
  1978年   10篇
  1977年   101篇
  1976年   204篇
  1975年   15篇
  1974年   9篇
排序方式: 共有8468条查询结果,搜索用时 15 毫秒
91.
This paper uses the results of the characterization of amorphous semiconductor thin film transistors (TFTs) with the quasi-permanent memory structure referred to as silicon oxide nitride semiconductor (SONOS) gates, to model spiking neural circuits. SONOS gates were fabricated and characterized. In addition, MOSFETs using organic copper phthalocyanine (CuPc) were fabricated with these SONOS gates to demonstrate proof of concept performance. Analog spiking circuits were then modeled using these low performance TFTs to demonstrate the general suitability of organic TFTs in neural circuits. The basic circuit utilizes a standard comparator with charge and discharge circuits. A simple Hebbian learning circuit was added to charge and discharge the SONOS device. The use of these elements allows for the design and fabrication of high-density 3-dimensional circuits that can achieve the interconnect density of biological neural systems.  相似文献   
92.
The effects of preamorphization implantation (PAI) on the interface properties between hafnium-silicate (HfSiO) gate dielectrics and silicon substrates were examined. In the case of an NH/sub 3/ nitrided interface, it was found that the PAI can improve the interface trap density (D/sub IT/) compared with the no PAI case. However, for the PAI samples, it was also found that samples with sacrificial screening oxide (Sac Ox) had worse interface properties compared with the samples without Sac Ox. It is attributed to the recoiled oxygen from Sac Ox during PAI.  相似文献   
93.
This paper presents a survey of non-fungible tokens (NFTs), including its history, technologies, standards, and challenges in their development. An NFT is a unique digital entity that is created and maintained using blockchain technology. Each NFT is identified using a unique smart contract and a token ID, so the whole history of the NFT can be globally identified by its address and token ID. The blockchain information indelibly identifies the current owner of any asset, previous owners, and original creator. NFTs are used to manage ownership of digital and physical assets and cryptocurrencies. The prices of popular NFTs have become very high, and the market for them has overheated in recent years. NFT technology and its ecosystem have evolved since Quantum, the first NFT, was stored in the Namecoin blockchain. Ethereum has become the main platform for NFT projects because it provides support for smart contracts. Currently, almost all NFT projects are launched on the Ethereum blockchain. NFT has two major standards called ERC-721 and ERC-1155, which have had important functions in the development of NFT. Starting with these two standards, other standards for NFT continue to emerge; they expand the functionality of NFT such as by adding utility. However, NFT is a very early technology, and it has not been long after the NFT concept was created and used. So there are several challenges for further improving NFT technology, in terms of usability, interoperability, and evolution. This paper presents a survey of NFT, including its history, technologies, standards, and challenges of NFT.  相似文献   
94.
A computer-aided diagnosis (CAD) algorithm identifying breast nodule malignancy using multiple ultrasonography (US) features and artificial neural network (ANN) classifier was developed from a database of 584 histologically confirmed cases containing 300 benign and 284 malignant breast nodules. The features determining whether a breast nodule is benign or malignant were extracted from US images through digital image processing with a relatively simple segmentation algorithm applied to the manually preselected region of interest. An ANN then distinguished malignant nodules in US images based on five morphological features representing the shape, edge characteristics, and darkness of a nodule. The structure of ANN was selected using k-fold cross-validation method with k = 10. The ANN trained with randomly selected half of breast nodule images showed the normalized area under the receiver operating characteristic curve of 0.95. With the trained ANN, 53.3% of biopsies on benign nodules can be avoided with 99.3% sensitivity. Performance of the developed classifier was reexamined with new US mass images in the generalized patient population of total 266 (167 benign and 99 malignant) cases. The developed CAD algorithm has the potential to increase the specificity of US for characterization of breast lesions.  相似文献   
95.
Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled‐emitter resistor and the other using an HBT‐based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain‐control range of 23 dB with a control‐voltage range from 0.4 to 2.6 V. The gain‐tuning sensitivity is 90 mV/dB. At VCTRL= 2.4 V, the 1 dB compression output power, P1‐dB, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and ‐1.8 dBm and 71mA in a VGA with a constant current source, respectively.  相似文献   
96.
97.
As technology evolves into the deep submicron level, synchronous circuit designs based on a single global clock have incurred problems in such areas as timing closure and power consumption. An asynchronous circuit design methodology is one of the strong candidates to solve such problems. To verify the feasibility and efficiency of a large‐scale asynchronous circuit, we design a fully clockless 32‐bit processor. We model the processor using an asynchronous HDL and synthesize it using a tool specialized for asynchronous circuits with a top‐down design approach. In this paper, two microarchitectures, basic and enhanced, are explored. The results from a pre‐layout simulation utilizing 0.13‐μm CMOS technology show that the performance and power consumption of the enhanced microarchitecture are respectively improved by 109% and 30% with respect to the basic architecture. Furthermore, the measured power efficiency is about 238 μW/MHz and is comparable to that of a synchronous counterpart.  相似文献   
98.
We correlate the failure in miniature X‐ray tubes with the field emission gate leakage current of gated carbon nanotube emitters. The miniature X‐ray tube, even with a small gate leakage current, exhibits an induced voltage on the gate electrode by the anode bias voltage, resulting in a very unstable operation and finally a failure. The induced gate voltage is apparently caused by charging at the insulating spacer of the miniature X‐ray tube through the gate leakage current of the field emission. The gate leakage current could be a criterion for the successful fabrication of miniature X‐ray tubes.  相似文献   
99.
In this paper, we propose a complex orthogonal design based on the theory of Finite projective plane. As most of the orthogonal designs incur low ratio of time diversity, the proposed complex orthogonal design has a relatively high ratio of time diversity. In addition, the proposed scheme has the following characteristics: (1) full spatial diversity (2) low rate (3) linear processing. We compare the proposed scheme with another complex design to show the tradeoffs. The proposed scheme can be of use for certain applications such as sensor networks and deep space exploration where there might be an imposed limit on the peak transmit power.  相似文献   
100.
The negative capacitance (NC) effect, recently discovered in a fluorite-based ferroelectric thin film, has attracted great attention as a rescue to overcome the scaling limitations of the conventional memory and logic devices of highly integrated circuits. The NC effect manifesting an S-shaped polarization–voltage (P–V) curve is initially interpreted by a 1-dimensional Landau Ginzburg Devonshire (LGD) model. However, a series of recent studies have found that this effect can also be explained by the inhomogeneous stray field energy (ISE) model. In this study, by extending the ISE model in the ferroelectric (FE)-dielectric (DE) layered structure, an analytical model that considers the influence of the interfacial screening charge distribution is presented. This model showed that the NC effect in the FE-DE heterostructure can be manifested in various forms other than a single S-shaped P–V curve. In particular, a double S-shaped P–V curve is expected from the fully compensated anti-parallel domain structure, confirmed experimentally in the actual Al2O3/(Hf0.5Zr0.5)O2/Al2O3 triple-layer structure. Furthermore, to reveal the origin of the double S-shaped P–V curve, a multidomain LGD model is presented. It is confirmed that this phenomenon is attributed to the evolution of inhomogeneous stray field energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号