首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112684篇
  免费   8203篇
  国内免费   4208篇
电工技术   5902篇
技术理论   11篇
综合类   6616篇
化学工业   19068篇
金属工艺   5857篇
机械仪表   6763篇
建筑科学   8659篇
矿业工程   3097篇
能源动力   3122篇
轻工业   6697篇
水利工程   1729篇
石油天然气   6254篇
武器工业   701篇
无线电   14044篇
一般工业技术   14339篇
冶金工业   5912篇
原子能技术   1343篇
自动化技术   14981篇
  2024年   439篇
  2023年   1768篇
  2022年   2933篇
  2021年   4037篇
  2020年   3083篇
  2019年   2613篇
  2018年   3007篇
  2017年   3399篇
  2016年   2968篇
  2015年   3895篇
  2014年   4922篇
  2013年   6302篇
  2012年   6600篇
  2011年   7223篇
  2010年   6293篇
  2009年   6201篇
  2008年   6224篇
  2007年   5804篇
  2006年   6076篇
  2005年   5461篇
  2004年   3720篇
  2003年   3216篇
  2002年   2870篇
  2001年   2776篇
  2000年   2890篇
  1999年   3399篇
  1998年   2931篇
  1997年   2561篇
  1996年   2298篇
  1995年   1940篇
  1994年   1564篇
  1993年   1225篇
  1992年   969篇
  1991年   738篇
  1990年   600篇
  1989年   500篇
  1988年   390篇
  1987年   295篇
  1986年   206篇
  1985年   176篇
  1984年   108篇
  1983年   81篇
  1982年   87篇
  1981年   57篇
  1980年   47篇
  1979年   32篇
  1978年   25篇
  1977年   25篇
  1976年   40篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, the examples of luminescent materials that exhibit multiresponsive properties are rarely reported. In this work, a new stimuli‐responsive dye P1 is designed and synthesized with two identical chromophores of naphthalimide, one at each side of an amidoamine‐based spacer. This amide‐rich molecule offers many possibilities for forming intra‐ and intermolecular hydrogen bond interactions. Particularly, P1 has an intrinsic property of cocrystallizing with methanol. Compared with the pristine P1 sample, the as‐prepared two‐component cocrystalline material displays an exceptive deep‐blue emission, which is extremely rare among naphthalimide‐based molecules in the solid state. Furthermore, the target material exhibits an obvious mechanochromic fluorescent behavior and a large spectral shift under force stimuli. On the other hand, the cocrystalline material shows an unusual “turn off” thermochromic luminescence accompanied by solvent evaporation. Moreover, using external stimuli to reversibly manipulate fluorescent quantum yields is rarely reported to date. The results demonstrate the feasibility of a new design strategy for solid‐state luminescence switching materials: the incorporation of solvents into organic compounds by cocrystallization to obtain a crystalline state luminescence system.  相似文献   
992.
The solvent‐engineering method is widely used to fabricate top‐performing perovskite solar cells, which, however, usually exhibit inferior reproducibility. Herein, a two‐stage annealing (TSA) strategy is demonstrated for processing of perovskite films, namely, annealing the intermediate phase at 60 °C for the first stage then at 100 °C for the second stage. Compared to conventional direct annealing temperature (DHA) at 100 °C, using this strategy, MAPbI3 films become more controllable, leading to superior film uniformity and device reproducibility with the champion device efficiency reaching 19.8%. More specifically, the coefficient of variation of efficiency for 49 cells is reduced to 5.9%, compared to 9.8% for that using DHA. The TSA process is carefully studied using Fourier transform infrared spectroscopy, X‐ray diffraction, and UV–vis absorption spectroscopy. It is found that in comparison with DHA the formation of hydrogen bonding and crystallization of perovskite are much slower and can be better controlled when using TSA. The improvements in film uniformity and device reproducibility are attributed to: 1) controllable MAPbI3 crystal growth stemming from the progressive formation of hydrogen bonding between methylammonium and halide; 2) suppression of intermediate phase film dewetting, which is believed to be due to its decreased mobility at the initial low‐temperature annealing stage.  相似文献   
993.
Nature has long offered human beings with useful materials. Herein, plant materials including flowers and leaves have been directly used as the dielectric material in flexible capacitive electronic skin (e‐skin), which simply consists of a dried flower petal or leaf sandwiched by two flexible electrodes. The plant material is a 3D cell wall network which plays like a compressible metamaterial that elastically collapses upon pressing plus some specific surface structures, and thus the device can sensitively respond to pressure. The device works over a broad‐pressure range from 0.6 Pa to 115 kPa with a maximum sensitivity of 1.54 kPa?1, and shows high stability over 5000 cyclic pressings or bends. The natural‐material‐based e‐skin has been applied in touch sensing, motion monitoring, gas flow detection, and the spatial distribution of pressure. As the foam‐like structure is ubiquitous in plants, a general strategy for a green, cost‐effective, and scalable approach to make flexible e‐skins is offered here.  相似文献   
994.
995.
996.
The trade-off relation between the strength and the electrical conductivity has been a long-standing dilemma in metallic materials. In the study, three key principles, i.e. elongated grains, sharp texture and nano-scale precipitates, were presented for preparing Al wire with high strength and high electrical conductivity based on the specially designed experiments for breaking the mutually exclusive relation between the strength and the electrical conductivity. The results show that the elongated grains could lead to a higher electrical conductivity in Al wire without sacrificing the strength; while, the 111 sharp texture can efficiently strengthen the Al wire without influencing the electrical conductivity. Furthermore, nano-scale precipitates with proper size can simultaneously improve the strength and electrical conductivity of Al alloy wire. Under the guidance of the above three key principles, Al wires with high strength and high conductivity were prepared.  相似文献   
997.
The knowledge on the biological molecular mechanisms underlying cancer is important for the precise diagnosis and treatment of cancer patients. Detecting dysregulated pathways in cancer can provide insights into the mechanism of cancer and help to detect novel drug targets. Based on the wide existing mutual exclusivity among mutated genes and the interrelationship between gene mutations and expression changes, this study presents a network‐based method to detect the dysregulated pathways from gene mutations and expression data of the glioblastoma cancer. First, the authors construct a gene network based on mutual exclusivity between each pair of genes and the interaction between gene mutations and expression changes. Then they detect all complete subgraphs using CFinder clustering algorithm in the constructed gene network. Next, the two gene sets whose overlapping scores are above a specific threshold are merged. Finally, they obtain two dysregulated pathways in which there are glioblastoma‐related multiple genes which are closely related to the two subtypes of glioblastoma. The results show that one dysregulated pathway revolving around epidermal growth factor receptor is likely to be associated with the primary subtype of glioblastoma, and the other dysregulated pathway revolving around TP53 is likely to be associated with the secondary subtype of glioblastoma.Inspec keywords: cancer, tumours, drugs, brain, neurophysiology, genetic algorithms, genetics, skin, proteins, molecular biophysics, genomics, patient diagnosis, molecular configurationsOther keywords: network‐based method, dysregulated pathways detection, glioblastoma cancer, biological molecular mechanisms, precise diagnosis, cancer patient treatment, drug targets, mutual exclusivity, mutated genes, gene mutations, expression changes, expression data, CFinder clustering algorithm, constructed gene network, gene sets, overlapping scores, glioblastoma‐related multiple genes, epidermal growth factor receptor, TP53, secondary subtype  相似文献   
998.
Owing to the strong affinity of thiols to Au and Ag, they are often employed to modify the surfaces of nanoparticles (NPs). Recently, these strong ligand-interface interactions have been employed to control NP growth, and this technique has emerged as a unique modulation strategy for creating unconventional plasmonic hybrid nanostructures. In these systems, the roles of the non-mercapto components of the thiol molecules and their structures are still unknown. Therefore, we herein present our investigation into this phenomenon. Primary amino (–NH2) groups in thiols are found to play a key role in regulating growth kinetics, i.e., in accelerating Ag deposition on Au NPs. The–NH2 groups are thought to bring Ag ions to the particle surface by coordinating to them, and thereby assist their reduction. The effect of molecular structure is non-trivial and thus provides the possibility of selective thiol detection. Based on the dependence of kinetic modulation on the non-mercapto components and molecular structures of molecules, we demonstrate the highly sensitive and specific detection of cysteine (limit of detection: 6 nM) in a mixture of 19 natural amino acids based on Ag growth on Au nanospheres. In addition, based on this modulation effect, we reveal the entrapping of chiral thiols within the growth layer through their plasmonic circular dichroism (PCD) responses. We believe that thiol-based growth regulation has great potential for creating plasmonic nanostructures with novel functionalities.
  相似文献   
999.
Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radiatively. However, the implantation of defects by external stimulation, such as uniaxial tension and irradiation, tends to introduce local damages or structural non-homogeneity, which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices. In this paper, we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition, without sacrificing their luminescence characteristics. The density of the defect is controlled directly by the concentration of hydrogen. For an appropriate hydrogen flux, the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions, compared with those samples with nearly perfect crystalline structure. The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest. However, the B exciton, exhibits a monotonic decline as the defect density increases. The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases. All the evidence indicates that the generated defects are in the form of sulfur vacancies. This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications.
  相似文献   
1000.
We demonstrate a facile and effective approach to significantly improve the photoluminescence of bulk MoS2 via laser thinning followed by gold particle decoration. Upon laser thinning of exfoliated bulk MoS2, photoluminescence emerges from the laser-thinned region. After further treatment with an AuCl3 solution, gold particles self-assemble on the laser-thinned region and thick edges, further increasing the fluorescence of bulk MoS2 28 times and the Raman response 3 times. Such fluorescence enhancement can be attributed to both surface plasmon resonance and p-type doping induced by gold particles. The combination of laser thinning and AuCl3 treatment enables the functionalization of bulk MoS2 for optoelectronic applications. It can also provide a viable strategy for mask-free and area-selective p-type doping on single MoS2 flakes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号