首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139963篇
  免费   11131篇
  国内免费   5604篇
电工技术   7777篇
技术理论   13篇
综合类   8606篇
化学工业   23500篇
金属工艺   7173篇
机械仪表   8577篇
建筑科学   11551篇
矿业工程   3872篇
能源动力   3878篇
轻工业   8942篇
水利工程   2224篇
石油天然气   7487篇
武器工业   916篇
无线电   17418篇
一般工业技术   17475篇
冶金工业   7021篇
原子能技术   1596篇
自动化技术   18672篇
  2024年   568篇
  2023年   2268篇
  2022年   3850篇
  2021年   5287篇
  2020年   3995篇
  2019年   3362篇
  2018年   3827篇
  2017年   4336篇
  2016年   3837篇
  2015年   4952篇
  2014年   6361篇
  2013年   7928篇
  2012年   8482篇
  2011年   9219篇
  2010年   8151篇
  2009年   7948篇
  2008年   7800篇
  2007年   7296篇
  2006年   7532篇
  2005年   6700篇
  2004年   4530篇
  2003年   3994篇
  2002年   3646篇
  2001年   3465篇
  2000年   3510篇
  1999年   4045篇
  1998年   3365篇
  1997年   2999篇
  1996年   2725篇
  1995年   2276篇
  1994年   1844篇
  1993年   1410篇
  1992年   1116篇
  1991年   842篇
  1990年   679篇
  1989年   576篇
  1988年   450篇
  1987年   334篇
  1986年   238篇
  1985年   199篇
  1984年   121篇
  1983年   95篇
  1982年   98篇
  1981年   65篇
  1980年   56篇
  1979年   42篇
  1977年   29篇
  1976年   40篇
  1962年   42篇
  1961年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   
52.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
53.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
54.
55.
56.
57.
正项目地址_中国北京项目面积_8000m~2设计单位_ArkA北京亦庄半岛幼儿园项目是设计团队与半岛教育集团的第二次合作,目标是将蒙特梭利教育理念和建筑设计融为一体,创造出一个更合理的空间和安全的环境,让孩子们能够自由快乐地学习和成长。原有的建筑物是一个开放的空间,整个大空间分作4层。设计团队的首要任务是根据孩子的比例改造空间。在设计时,设计团队加入了许多小房屋的设计,以此让孩子更具有主人感和安全感。对教室的设计是简约的房屋;图书馆则是一个开放空间,在其中央种下一棵树,好似一个乡村小镇的广场;走廊设计成多功能的开放空间,孩子  相似文献   
58.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
59.
In order to improve the dispersity and stability of the nano‐SiO2 aqueous system with high solid content, a kind of polyacrylic acid dispersant with methoxysilicon end groups (KH590‐PAA) was synthesized by photopolymerization of acrylic acid (AA) initiated with (3‐mercaptopropyl)trimethoxysilane (KH590). After adding KH590‐PAA into the nano‐SiO2 aqueous dispersion system (20 wt% solid content), the viscosity and the curing time of the system were measured with a rotational viscometer and the inverted bottle method. Moreover, the dispersion mechanism of KH590‐PAA for the nano‐SiO2 aqueous system was researched by measuring the adsorption capacity, the particle size and the zeta potential of the nanoparticles with a conductivity meter, dynamic light scattering, SEM and TEM, respectively. The results showed that the methoxysilicon groups in KH590‐PAA could react with hydroxyl groups on the surface of nano‐SiO2 in the process of stirring, which enhanced the adsorption capacity of the dispersant and then increased the surface charge of the particles. Therefore, electrostatic repulsion and steric hindrance effects between the SiO2 nanoparticles could be further enhanced by adding the KH590‐PAA dispersant, and then the nano‐SiO2 aqueous system exhibited better dispersity and stability. Besides, the dispersion properties of SiO2 nanoparticles in water were closely related to the addition amount and the molecular weight of the KH590‐PAA dispersant. © 2018 Society of Chemical Industry  相似文献   
60.
Tricalcium silicate (C3S) and hydroxyapatite (HAp) composites were fabricated through the sol-gel process. The aim of this research is to improve the biocompatibility of C3S through HAp addition and study the potential of using this as coating materials. The composites (HAp/C3S) were characterised by Fourier transform infrared spectrometry, thermal gravity-differential thermal analysis and X-ray diffraction. The working and setting times of cement pastes were tested using Gillmore needle. Mechanical properties were examined by nanoindentation and material testing system. In vitro biocompatibility of the materials were studied by cell attachment and viability of L929 and MG-63 cells. HAp/C3S as a coating material on gelatin film were measured with the surface roughness and imaged by scanning electron microscope. With the addition of HAp, no undesirable free CaO was detected with the synthesis by the sol-gel preparation. The pH values of HAp added groups were between 7.54 and 8.76, which were much lower than pure C3S group (pH?=?11.75). For in vitro studies, the presence of HAp could effectively enhance the cell attachment and viability of both L929 and MG-63 cells grown in the extract or directly on the composites. However, the mechanical properties of the composites were impaired as compared to pure C3S. Lastly, HAp/C3S cement could be evenly coated on gelatin film. HAp is successfully demonstrated to improve C3S biocompatibility with this new composites HAp/C3S. C-75 (75% C3S and 25% HAp), in particular, has good biocompatibility, relatively high compressive strength and can be uniformly coated onto gelatin film. Thus, C-75 is a promising material for further investigation as a coating on other biopolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号