首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25351篇
  免费   2059篇
  国内免费   861篇
电工技术   1331篇
技术理论   1篇
综合类   1397篇
化学工业   4568篇
金属工艺   1336篇
机械仪表   1324篇
建筑科学   1871篇
矿业工程   580篇
能源动力   899篇
轻工业   1664篇
水利工程   344篇
石油天然气   1347篇
武器工业   122篇
无线电   3121篇
一般工业技术   3301篇
冶金工业   1415篇
原子能技术   330篇
自动化技术   3320篇
  2024年   58篇
  2023年   408篇
  2022年   653篇
  2021年   1052篇
  2020年   739篇
  2019年   680篇
  2018年   702篇
  2017年   820篇
  2016年   766篇
  2015年   931篇
  2014年   1256篇
  2013年   1611篇
  2012年   1616篇
  2011年   1759篇
  2010年   1419篇
  2009年   1476篇
  2008年   1350篇
  2007年   1265篇
  2006年   1369篇
  2005年   1185篇
  2004年   850篇
  2003年   771篇
  2002年   765篇
  2001年   545篇
  2000年   530篇
  1999年   600篇
  1998年   576篇
  1997年   471篇
  1996年   446篇
  1995年   344篇
  1994年   277篇
  1993年   189篇
  1992年   172篇
  1991年   115篇
  1990年   90篇
  1989年   72篇
  1988年   87篇
  1987年   47篇
  1986年   43篇
  1985年   21篇
  1984年   29篇
  1983年   13篇
  1982年   25篇
  1981年   12篇
  1980年   9篇
  1979年   15篇
  1977年   4篇
  1976年   9篇
  1975年   4篇
  1965年   5篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
991.
Yeast cells were immobilized on calcium alginate beads prepared using different calcium concentrations. The compression properties of the immobilized beads (e.g., softness index and retardation time for compression) were strongly affected by the calcium concentration. The effects of the bead properties on filtration characteristics, such as cake porosity, specific cake filtration resistance, cake compression creeping effect and cake compressibility, were analysed using a dead-end filtration system. The filtration curve of yeast-immobilized beads had an “S” shape, similar to that of soft gel particles. The cake compression behaviour and variation in cake properties were directly reflected on the curve trend. The Voigt in the series model was employed to describe variation in cake porosity with time during a compression. The yeast immobilization increased the bead softness; therefore, the porosity of a cake formed by yeast-immobilized beads was lower than that formed by pure calcium alginate beads. The cakes formed by yeast-immobilized beads possessed a high compressibility of approximately 1.0 and a high softness index of approximately 1.5. The beads prepared using lower calcium concentrations had higher softness, shorter retardation times for compression, higher cake compressibility, lower cake porosity and higher specific cake filtration resistance. The results demonstrated that immobilizing yeast cells on calcium alginate beads is beneficial for retaining higher yeast activity than that of freely suspended yeast. However, the activity levels of yeast immobilized using different calcium concentrations were nearly the same after 3 h. Therefore, using high concentrations of calcium for yeast immobilization is beneficial for improving yeast activity and filtration characteristics.  相似文献   
992.
993.
The narrow emission spectra of light emitting diodides (LED) as irradiation source has brought great challenge for the development of efficient photoinitiators sensitive to LED light. This paper described a series of novel unimolecular type II photoinitiators, containing thioxanthones as chromophores and benzodioxoles as coinitiators. The structures of the photoinitiators were characterized by 1H NMR, 13C NMR and high‐resolution mass spectrometer. Study on the photophysical properties of the photoinitiators indicated that electron donors/acceptors as spacers between thioxanthone and benzodioxole affected both the UV–Vis absorption and the fluorescence emission. The long wavelength absorptions from 385 nm to 402 nm as well as low fluorescence quantum yields make the investigated benzodioxole derivatives quite attractive as efficient photoinitiators under UV‐A and visible LED light irradiation. With a proper molecular design, the unimolecular photoinitiator exhibited higher initiation efficiency than the thioxanthone derivatives from the literature. Possible initiation mechanism was also proposed based on the photolysis study. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43239.  相似文献   
994.
The mechanical blending of polypropylene (PP) and low density polyethylene (LDPE) is an economical and simple method for producing new polymeric materials for specific applications. However, the reduction in strain‐at‐break of the blend is one of its main shortcomings. In this study, PP/LDPE foamed parts were fabricated by conventional injection molding (CIM) with azodicarbonamide as a chemical blowing agent (CBA) and tested for tensile properties at two test speeds. Also, the fracture surfaces of the parts were investigated by scanning electron microscopy (SEM). In addition, to investigate the underlying mechanism of the super‐ductility, the tested samples were carefully analyzed and compared, and further characterized by differential scanning calorimetry and SEM. The results suggest that fabricating PP/LDPE super‐ductile parts using CIM with a CBA is feasible. The results also indicate that there is a close relationship between the mechanical properties and morphological structures, which are deeply influenced by the dosage of CBA, the PP/LDPE ratio, and the packing parameters. Furthermore, compared to conventional injection molded solid parts, the ductility of the foamed parts can be dramatically improved by the formation of microfibrils in the PP phase, which come into being under certain processing conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44101.  相似文献   
995.
Fine regulation of the microstructure of rubber/polypropylene (PP) alloys could remarkably reduce the coefficient of linear thermal expansion (CLTE) while retaining the mechanical properties similar to those of thermoplastic elastomers. Rubber/PP elastomers with different morphologies were successfully prepared by controlling the appropriate rubber type, viscosity ratio, and processing method. The CLTE of the polymer alloy parallel to the microlayer directions was considerably reduced when the rubber domains were deformed into microlayers and co‐continuous with plastic domains. The thickness of the PP layers played a crucial role on CLTE reduction. The CLTE considerably decreased with reduced thickness of the PP layer. The sample with a co‐continuous microlayer structure exhibited good flexibility, high elongation, low hardness, and permanent deformation. Thus, low‐thermal‐expansion elastomer materials may have wide applications. Stress relaxation and strain recovery of the ethylene–propylene–diene terpolymer/PP (70/30 wt %) blend were investigated to further clarify the influence of co‐continuous microlayer structure on mechanical properties. Anisotropic mechanical properties were consistent with the morphology. Results of the stress relaxation behavior test would provide further support to the mechanism of the low thermal expansion of blends with co‐continuous microlayer structure. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43902.  相似文献   
996.
The intrinsic low quantum yield (QY) of type II core shell quantum dots (QDs) composes the limitation for these heterostructured nanomaterials to be used in practical application. Herein, magnetic hyperthermia method is employed to intensify reaction process and facilely synthesize CdTe/CdSe heterostructured QDs with improved optical performance for the first time. The QY of the type II QDs is increased to 49% by further growing an inert ZnO layer. The type I interface between CdSe and ZnO helps confine electrons to the inner structure of the QDs, thus improving the QY. The successful preparation and performance enhancement of the CdTe/CdSe type II QDs via magnetic hyperthermia method demonstrate the great potential of this method for the preparation of other materials. Besides, the red‐emission QDs are used as conversion materials in white light emitting diodes to reveal their promising application in practical illumination. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2614–2621, 2016  相似文献   
997.
A specimen having a stoichiometric composition of KSbO3·(KSb) calcined at 800°C has an R rhombohedral structure (RS), and changes to a Pn cubic structure (CS) when calcined at 1100°C. Finally, a <111>‐oriented rhombohedral phase is formed in the specimen calcined at 1230°C. K/Sb ratio decreases from 1.0 in RS, 0.93 in CS, and finally to 0.85 in <111>‐oriented rhombohedral phases. On the other hand, a specimen having a K‐excess composition of K1.1SbO3 calcined at 800°C shows a RS that is maintained in the K‐excess specimen calcined at 1230°C. The composition of these specimens is very close to KSb. Therefore, the RS with a space group of R is a stable form of KSbO3. The formation of Pn cubic and <111>‐oriented R phases can be explained by the evaporation of K2O during the calcination process at temperatures above 1100°C.  相似文献   
998.
(Na1?xKx)NbO3 (NKN) platelets synthesized at 600°C for 12 h have an Amm2 orthorhombic structure. However, the structure of NKN platelets synthesized at 500°C is a mixture of R3m rhombohedral and Amm2 orthorhombic structures. The formation of a rhombohedral structure is attributed to the presence of OH? and H2O defects in the NKN platelets. The piezoelectric strain constant (d33) of NKN platelets synthesized at 600°C for 12 h is 100 pmV?1, whereas that of NKN platelets synthesized at 500°C is lesser (50 pmV?1) due to the presence of these defects. Piezoelectric nanogenerators (PNGs) are fabricated using composites consisting of NKN platelets and polydimethylsiloxane. A large output voltage of 25 V and output current of 2.7 μA were obtained for the PNG with NKN platelets synthesized at 600°C for 6 h. This PNG shows a high output electrical energy of 3.0 μW at an external load of 5.1 MΩ.  相似文献   
999.
In this work we develop a novel modeling and global optimization‐based planning formulation, which predicts product yields and properties for all of the production units within a highly integrated refinery‐petrochemical complex. Distillation is modeled using swing‐cut theory, while data‐based nonlinear models are developed for other processing units. The parameters of the postulated models are globally optimized based on a large data set of daily production. Property indices in blending units are linearly additive and they are calculated on a weight or volume basis. Binary variables are introduced to denote unit and operation modes selection. The planning model is a large‐scale non‐convex mixed integer nonlinear optimization model, which is solved to ε‐global optimality. Computational results for multiple case studies indicate that we achieve a significant profit increase (37–65%) using the proposed data‐driven global optimization framework. Finally, a user‐friendly interface is presented which enables automated updating of demand, specification, and cost parameters. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3020–3040, 2016  相似文献   
1000.
Bi‐doped xTeO2–(60?x)GeO2–15B2O3–20MgO–5Al2O3 glasses were prepared by the conventional melt‐quenching method and their absorption and fluorescence spectra were characterized. Broadband near‐infrared (NIR) emission from Bi centers centered around 1240 nm with a full width at half maximum (FWHM) of 250 nm was observed, and the position of the emission peak strongly depends on the excitation wavelength. Increasing TeO2 concentration results in the strong coloration of the glass, leading to the reduction and finally, complete quenching of the NIR emission. Based on Raman, X‐ray photoelectron spectroscopy and transmission microscopy observation, the coloration of the glass at high TeO2 concentration can be ascribed to the precipitation of elemental Te nanoparticles of around 3–8 nm, which effectively suppresses the NIR emission by reabsorption. The precipitation of Te nanoparticles in an oxide glass may find novel applications in photonics and relevant fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号