The paper is concerned with the problem of positive L1-gain filter design for positive continuous-time Markovian jump systems with partly known transition rates. Our aim is to design a positive full-order filter such that the corresponding filtering error system is positive and stochastically stable with L1-gain performance. By applying a linear co-positive Lyapunov function and free-connection weighting vectors, the desired positive L1-gain filter is provided. The obtained theoretical results are demonstrated by numerical examples. 相似文献
The nature of many sensor applications as well as continuously changing sensor data often imposes real-time requirements on wireless sensor network protocols. Due to numerous design constraints, such as limited bandwidth, memory and energy of sensor platforms, and packet collisions that can potentially lead to an unbounded number of retransmissions, timeliness techniques designed for real-time systems and real-time databases cannot be applied directly to wireless sensor networks. Our objective is to design a protocol for sensor applications that require periodic collection of raw data reports from the entire network in a timely manner. We formulate the problem as a graph coloring problem. We then present TIGRA (Timely Sensor Data Collection using Distributed Graph Coloring) — a distributed heuristic for graph coloring that takes into account application semantics and special characteristics of sensor networks. TIGRA ensures that no interference occurs and spatial channel reuse is maximized by assigning a specific time slot for each node. Although the end-to-end delay incurred by sensor data collection largely depends on a specific topology, platform, and application, TIGRA provides a transmission schedule that guarantees a deterministic delay on sensor data collection. 相似文献
Due to air turbulence, large areas of coal will fall when the special coal-transportation trains pass the tunnel exits and entrances. Aiming at the problems of low efficiency and high cost of manual cleaning for long distance coal cleaning in the tunnel, a new railway tunnel fallen coal dust collection device which was composed of a main conveying coal feeding pipe and multiple branch pipes of coal suction was designed. It was used to clean the small particles and lightweight railway tunnel fallen coal. Firstly, the gas-solid two-phase flow model based on the Euler-Lagrange approach for the design of the main conveying coal feeding pipe was established in the coal conveying pipelines. Secondly, the effect of the coal particles' incident angle and multiple branch pipe spacing on the main coal conveying pipe flow field, which was based on Fluent finite element simulation software, was studied. What was more, the optimal angle of incidence and the optimal value of the number of branch coal suction pipe, which was installed on the main conveying pipe, were analyzed. Finally, the finite element simulation was verified by field test. Simulation and experimental results showed that it was more conducive to the railway tunnel fallen coal transportation when coal particles' incident angle was less than 45° and the branch pipe spacing was in the vicinity of 750 mm. For that when incident angle was less than 45°, the main conveying coal pipe pressure-drop became weaker and particle flow could obtain large horizontal transport velocity. And when the branch pipe spacing was in the vicinity of 750 mm, the horizontal transport velocity had a smaller fluctuation range and the transportation of coal was larger than that of the other groups. The research results are of great significance to improve the structure of the main conveying coal pipe, increase the efficiency of tunnel coal conveying and optimize the railway tunnel coal dust collection device. 相似文献
The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.