首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   20篇
  国内免费   4篇
电工技术   6篇
综合类   1篇
化学工业   67篇
金属工艺   4篇
机械仪表   8篇
建筑科学   10篇
能源动力   71篇
轻工业   23篇
水利工程   2篇
石油天然气   2篇
无线电   43篇
一般工业技术   65篇
冶金工业   15篇
原子能技术   10篇
自动化技术   35篇
  2024年   3篇
  2023年   2篇
  2022年   15篇
  2021年   29篇
  2020年   22篇
  2019年   18篇
  2018年   26篇
  2017年   10篇
  2016年   14篇
  2015年   17篇
  2014年   17篇
  2013年   36篇
  2012年   22篇
  2011年   15篇
  2010年   19篇
  2009年   22篇
  2008年   18篇
  2007年   18篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   5篇
  1996年   3篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有362条查询结果,搜索用时 15 毫秒
31.
Support vector machines (SVM), a soft programming technique, has been used to estimate the temperature distribution and flow fields in a square porous enclosure heated discretely by three isothermal heaters from the left vertical wall. Right vertical wall of the cavity was isothermal but it has colder temperature than the heaters while remaining walls were adiabatic. A database was prepared by solving the governing equations which were written using Darcy flow model. Using finite difference method to discretize the equation, a computational fluid dynamics (CFD) code was written. A correlation was developed between Nusselt and Rayleigh numbers. Using obtained database, further values of temperature and velocities were estimated by SVM technique at different Rayleigh numbers and locations of heater. It was observed that SVM was a useful technique on estimation of streamlines and isotherms. Thus, SVM reduces the computational time and helps to solve some cases when CFD fails to solve due to numerical instability.  相似文献   
32.
An ecological performance analysis for an irreversible dual-cycle cogeneration system has been performed. The objective function is called as the exergetic-performance coefficient (EPC) and defined as the ratio of total exergy output to the loss rate of availability. The general and optimal performances of the irreversible dual-cycle cogeneration system, having a finite-rate of heat transfer, heat leak and internal irreversibilities based on the EPC objective function have been investigated. Comparisons with respect to the optimal total-exergy output are also provided in order to establish the utility of the new exergetic-performance coefficient. The analyzed results of the dual-cycle cogeneration system considered, working at maximum EPC conditions, have a significant advantage in terms of entropy-generation rate and can be used for the selection of optimal design parameters.  相似文献   
33.
While our knowledge of fiber formation by using conventional nanofiber spinning techniques has increased to a considerable extent, there are still few studies on centrifugal spinning either in academia or in the industry. Centrifugal spinning is a comparatively new method of producing fibers having nano- or microscale diameters. In this study, three main parameters (nozzle orifice diameter, rotational speed, polymer concentration) of centrifugal spinning were optimized to produce air filter media from thermoplastic polyurethane nanofibers. The effect of concentration of polymer solution was found to be a major contributor in TPU fibers optimization estimating 77.5%. After the optimization studies, the average fiber diameter of nanofiber sample produced at optimum conditions (22G needle as an orifice, 4000 rpm, and 10 wt% concentration of polymer solution) was 205 ± 84 nm. Aerosol filtration performance of the produced webs was analyzed. Filtration efficiency of the optimized sample was found to be 99.4% for 0.3 µm particle size at an expense of 98 Pa pressure drop.

Copyright © 2018 American Association for Aerosol Research  相似文献   

34.
A numerical analysis of the entropy production has been performed due to natural convection heat transfer and fluid flow in isosceles triangular enclosures with partially heated from below and symmetrically cooled from sloping walls. Governing equations are solved by finite difference method. Governing parameters on flow and temperature fields are Rayleigh number (103  Ra  8.8 × 105), dimensionless length of heater (0.25  (ℓ′ = ℓ/L)  1.0), dimensionless location of heater (0.25  (c′ = c/L)  0.75) and inclination angle of slopping walls (30°  β  60°). Heat transfer results are presented in terms of local and mean Nusselt numbers (Nu) while entropy production results are shown with entropy production number (Ns) and Bejan number (Be). Isotherms, streamlines, contours of entropy production due to heat transfer and fluid friction irreversibility are plotted. It is observed that entropy production number increases but Bejan number decreases with increasing of Rayleigh number. However, both entropy production due to heat transfer and fluid friction irreversibility are affected by higher inclination angle of triangle and length of heater.  相似文献   
35.
Silicon - Feeling prone to stress differs with plant production stage, water scarcity near commencement of grain filling phase has a significant reduced grain yield through fewer endosperm and sink...  相似文献   
36.
Diker  Aykut  Sönmez  Yasin  Özyurt  Fatih  Avcı  Engin  Avcı  Derya 《Multimedia Tools and Applications》2021,80(16):24777-24800
Multimedia Tools and Applications - The accurate separation of ECG signals has become crucial to identify heart diseases. Machine learning methods are widely used to separate ECG signals. The aim...  相似文献   
37.
Cu(BDC) metal–organic framework (MOF) was used as a support for the copper (Cu) catalyst applied in the methanol steam reforming (MSR) process at low temperatures (130–250 °C) with a feed WHSV = 9.2 h?1 within the monolithic reactor. Also, the effects of diverse promoters were examined on the catalytic activities of the Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts. Results showed that the Ce/Sm–Cu(BDC) supports exhibited highest activities, lowest reduction temperatures and largest specific surface areas, which caused highest distributions of the active copper metal nanoparticles on the supports. The reactor tests displayed that the activities of Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts followed the order X = Ce > Sm > Y > La > Pr > Cu(BDC) > Zn > Gd. The highest activities of Ce and Sm containing catalysts were attributed to the presence of CeO2 and Sm2O3 caused the oxygen vacancies on the catalyst surface which had positive effects on the methanol reforming process. The time-on-stream stability tests showed the highest resistance of the Cu/Ce–Cu(BDC) catalyst to the carbon formation during 32 h. Consequently, the Cu/Ce–Cu(BDC) with the highest stability, methanol conversion and carbon monoxide selectivity could be used in practical industrial applications.  相似文献   
38.
CNTs were decorated onto Sr doped ZnO nanoparticles to construct an efficient photocatalyst via a facile sol-gel method. The as-fabricated Sr doped ZnO/CNTs with recyclability exhibits Sr and CNTs content dependent hydrogen evolution activit under visible light illumination. The Sr doped ZnO/CNTs photocatalyst shows the highest hydrogen evolution rate of 2732.2 μmolh?1g?1, which is 33.7 and 2.83 times higher than pure ZnO and Sr doped ZnO photocatalysts, respectively. The improved hydrogen evolution activity of Sr doped ZnO/CNTs is primarily assigned to high surface area, Sr doping and construction of heterojunction, which can extend the light absorption, decrease the optical band gap and improve the charge separation. Moreover, the underlying photocatalytic mechanism is proposed on the basis of Mott-Schottky study and explains the interfacial charge transfer process from ZnO to CNTs and Sr. This work open new strategies to synthesize CNTs based nanocomposite for hydrogen evolution.  相似文献   
39.
In this paper, preliminary support design of a tunnel was analyzed by numerical and empirical approaches. The case study for this analysis is a tunnel to be constructed on the Bilecik-Istanbul roadway in Turkey. The rock mass properties of the tunnel route and design support recommendations were obtained by using an empirical approach. The rock mass properties obtained from the empirical method were used as input parameters for the numerical analysis. The empirical and numerical results, in terms of support design, were evaluated. It was seen that the numerical analysis results supported by empirical values were logical and reliable.  相似文献   
40.
Some astronomers are considering the moon as an attractive location within the inner solar system for a variety of astronomical observatories, some of which could be operational early in the 21st century. This paper describes the computer‐aided structural design of a 122‐m diameter, fully steerable, parabolic radio telescope to be located on the moon. The loads acting on such a reflector differ substantially from those acting on a reflector that must operate in earth's environment. The moon has excellent advantages as a location for such an instrument. The absence of atmosphere completely eliminates the wind, snow, and ice loads. The gravity field is only one‐sixth that of earth's. The thermal changes from night to day are severe, but structural problems can be avoided by using a thermally stable composite material. Structural elements for the reflector dish have been analyzed and designed for static loads with a specially written interactive graphical computer program. The resulting structure has a mass nearly 40 times less than its earth's counterpart made of steel. The evaluation of the results of the design studies supports the possibility of building a large‐aperture parabolic radio telescope on the moon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号