首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   23篇
  国内免费   3篇
电工技术   50篇
化学工业   204篇
金属工艺   29篇
机械仪表   14篇
建筑科学   28篇
矿业工程   1篇
能源动力   16篇
轻工业   101篇
水利工程   2篇
无线电   113篇
一般工业技术   171篇
冶金工业   230篇
原子能技术   18篇
自动化技术   67篇
  2023年   5篇
  2022年   12篇
  2021年   18篇
  2020年   5篇
  2019年   13篇
  2018年   16篇
  2017年   11篇
  2016年   23篇
  2015年   13篇
  2014年   22篇
  2013年   31篇
  2012年   32篇
  2011年   40篇
  2010年   32篇
  2009年   36篇
  2008年   35篇
  2007年   40篇
  2006年   38篇
  2005年   37篇
  2004年   33篇
  2003年   29篇
  2002年   28篇
  2001年   25篇
  2000年   19篇
  1999年   28篇
  1998年   96篇
  1997年   57篇
  1996年   34篇
  1995年   21篇
  1994年   24篇
  1993年   25篇
  1992年   8篇
  1991年   12篇
  1990年   15篇
  1989年   10篇
  1988年   16篇
  1987年   8篇
  1986年   13篇
  1985年   11篇
  1984年   14篇
  1983年   8篇
  1982年   6篇
  1981年   2篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1977年   9篇
  1976年   6篇
  1975年   4篇
  1966年   1篇
排序方式: 共有1044条查询结果,搜索用时 0 毫秒
171.
Reaction between epoxidized natural rubber and poly(L ‐lactide) (PLLA) was investigated quantitatively in terms of conversion of the epoxidized natural rubber. The epoxidized natural rubber was prepared by epoxidation of high ammonia natural rubber (HA‐NR) or deproteinized natural rubber (DPNR) with peracetic acid followed by depolymerization with ammonium persulfate. The resulting liquid HA‐NR having epoxy group (LENR) or liquid DPNR having epoxy group (LEDPNR) were subjected to heating at 473 K for 20 min, after blending with PLLA. The products were characterized through morphology observation, DSC measurement, and 1H‐NMR spectroscopy. The conversions of the rubbers were estimated from intensity ratio of signals in 1H‐NMR spectrum for the products after removing unreacted rubber with toluene. Difference in the estimated conversion between the LENR/PLLA and LEDPNR/PLLA blends was interpreted in relation to proteins present in the rubber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
172.
173.
Crystal structure, and electrical conducting and magnetic properties of a radical cation salt of EDO-TTFVODS with magnetic FeCl4? ion, (EDO-TTFVODS)2FeCl4 (EDO-TTFVODS = ethylenedioxytetrathiafulvalenoquinone-1,3-diselenolemethide) are reported. In this salt, there are two independent donor molecules formed two different layers A and B, and the counter FeCl4? ions layer is sandwiched between two donor layers A and B along the b-axis. The donor molecules form the one-dimensional columns along the a-axis in both donor layers. This salt shows high conductivity at room temperature (σRT = 25 S cm?1) and a metallic behavior down to ca. 80 K, where a metal–insulator transition however occurs. The magnetic susceptibility obeys a Curie–Weiss law (Curie constant C = 4.42 emu K mol?1 and Weiss temperature Θ = ?1.5 K), without any magnetic ordering down to 1.8 K. This result suggests the weak antiferromagnetic interaction between the d spins of FeCl4? ions.  相似文献   
174.
The electrochemical behavior of B1.0C2.4N1.0 thin film was investigated in acidic, neutral and alkaline solutions. The anodic polarization curve of the film in 1 M NaOH showed the anodic dissolution of the film. The curve of the film in 1 M HCl showed no anodic dissolution. The cathodic polarization curve in 1 M NaCl showed shift to a negative potential side, but the anodic polarization curve was the same as that of Pt. The anodic dissolution in 1 M NaOH depended on potentials, that is, no anodic dissolution was recognized in a potential range of −0.2 to 0.1 V but the dissolution rate increased with increasing potential in a range of 0.1-0.6 V. The anodic current density of the film is directly proportional to the dissolution rate at potentials higher than 0.1 V. The dissolution rate of the film was increased with increasing solution pH.  相似文献   
175.
Three rotating disk biofilm reactors were operated to evaluate whether bioaugmentation and biostimulation can be used to improve the start-up of microbial nitrification. The first reactor was bioaugmented during start-up period with an enrichment culture of nitrifying bacteria, the second reactor received a synthetic medium containing NH(4)(+) and NO(2)(-) to facilitate concomitant proliferation of ammonia- and nitrite-oxidizing bacteria, and the third reactor was used as a control. To evaluate the effectiveness of bioaugmentation and biostimulation approaches, time-dependent developments of nitrifying bacterial community and in situ nitrifying activity in biofilms were monitored by fluorescence in situ hybridization (FISH) technique and microelectrode measurements of NH(4)(+), NO(2)(-), NO(3)(-), and O(2). In situ hybridization results revealed that addition of the enrichment culture of nitrifying bacteria significantly facilitated development of dense nitrifying bacterial populations in the biofilm shortly after, which led to a rapid start-up and enhancement of in situ nitrification activity. The inoculated bacteria could proliferate and/or survive in the biofilm. In addition, the addition of nitrifying bacteria increased the abundance of nitrifying bacteria in the surface of the biofilm, resulting in the higher nitrification rate. On the other hand, the addition of 2.1mM NO(2)(-) did not stimulate the growth of nitrite-oxidizing bacteria and did inhibit the proliferation of ammonia-oxidizing bacteria instead. Thus, the start-up of NO(2)(-) oxidation was unchanged, and the start-up of NH(4)(+) oxidation was delayed. In all the three biofilm reactors, data sets of time series analyses on population dynamics of nitrifying bacteria determined by FISH, in situ nitrifying activities determined by microelectrode measurements, and the reactor performances revealed an approximate agreement between the appearance of nitrifying bacteria and the initiation of nitrification activity, suggesting that the combination of these techniques was a very powerful monitoring tool to evaluate the effectiveness of bioaugmentation and biostimulation strategies.  相似文献   
176.
Recently, a data processing and retrieval algorithm (version 2) for ozone, aerosol, and temperature lidar measurements was developed for an ozone lidar system at the National Institute for Environmental Studies (NIES) in Tsukuba (36 degrees N,140 degrees E), Japan. A method for obtaining the aerosol boundary altitude and the aerosol extinction-to-backscatter ratio in the version 2 algorithm enables a more accurate determination of the vertical profiles of aerosols and a more accurate correction of the systematic errors caused by aerosols in the vertical profile of ozone. Improvements in signal processing are incorporated for the correction of systematic errors such as the signal-induced noise and the dead-time effect. The mean vertical ozone profiles of the NIES ozone lidar were compared with those of the Stratospheric Aerosol and Gas Experiment II (SAGE II); they agreed well within a 5% relative difference in the 20-40 km altitude range and within 10% up to 45 km. The long-term variations in the NIES ozone lidar also showed good coincidence with the ozonesonde and SAGE II at 20, 25, 30, and 35 km. The temperatures retrieved from the NIES ozone lidar and those given by the National Center for Environmental Prediction agreed within 7 K in the 35-50 km range.  相似文献   
177.
The effects of matrix types on Charpy impact properties were investigated in Fe–0.2%C–1.5%Si–1.5%Mn (mass%) transformation-induced plasticity steels. The steels with annealed martensite and bainitic ferrite matrix possessed higher upper shelf Charpy impact absorbed energy than the steel with polygonal ferrite and martensitic matrix. In addition, the low ductile–brittle fracture appearance transition temperatures were achieved in annealed martensite and martensite types in comparison with those of other steels.  相似文献   
178.
The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix (i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile–brittle fracture appearance transition temperature that ranged from 123 K to 143 K (?150 °C to ?130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.  相似文献   
179.
The International Fusion Materials Irradiation Facility (IFMIF) Engineering Design and Engineering Validation Activities (EVEDA) are being developed in a joint project in the framework of the Broader Approach (BA) Agreement between EU and Japan. This project has now entered into a crucial phase as the engineering design of IFMIF is now being formulated in a series of 3 subsequent phases for delivering an Interim IFMIF Engineering Design Report (IIEDR) by mid of 2013. Content of these phases is explained, including the plant configuration detailing the 5 IFMIF facilities and their systems. Together with the Engineering Design Activities, prototyping sub-projects are pursued in the Engineering Validation Activities which consist of the design, manufacturing and testing of the following prototypical systems: Linear IFMIF Prototype Accelerator (LIPAc), EVEDA Lithium Test Loop (ELTL), and High Flux Test Module (HFTM) with the prototypical helium cooling loop (HELOKA). Highlights are described from recent experiments in the Engineering Validation Activities.  相似文献   
180.
The aim of this study was to prepare transparent organic–inorganic nanohybrid materials with improved physical properties in comparison with the matrix polymer. Polymerizable silica nanoparticles were synthesized via the reaction of silanol groups on the surface of silica nanoparticles (particle diameter ≈ 12 nm) with isocyanate groups of 2‐(methacryloyloxy)ethyl isocyanate (MOI) in ethyl acetate. In addition, the matrix monomer, urethane dimethacrylate, was prepared by the reaction of an MOI isocyanate group with the hydroxyl group of 2‐hydroxyethyl methacrylate, and novel organic–inorganic nanohybrid materials were obtained at various silica contents with bulk polymerization. The surface treatment of the silica nanoparticles and preparation of the matrix monomer were carried out in a one‐pot reaction. The prepared hybrid materials retained high transparency, and the elastic modulus and surface hardness improved with increasing silica content. Moreover, the strength of the material containing 20 wt % silica was up to 30 MPa higher than that of the matrix polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号