全文获取类型
收费全文 | 140篇 |
免费 | 2篇 |
专业分类
电工技术 | 3篇 |
化学工业 | 56篇 |
金属工艺 | 6篇 |
机械仪表 | 4篇 |
能源动力 | 3篇 |
轻工业 | 4篇 |
石油天然气 | 11篇 |
无线电 | 1篇 |
一般工业技术 | 39篇 |
冶金工业 | 12篇 |
自动化技术 | 3篇 |
出版年
2024年 | 3篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 5篇 |
2018年 | 12篇 |
2017年 | 9篇 |
2016年 | 4篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 8篇 |
2012年 | 6篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 6篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有142条查询结果,搜索用时 0 毫秒
81.
Assessing the performance of an industrial SBCR for Fischer–Tropsch synthesis: Experimental and modeling
下载免费PDF全文

Laurent Sehabiague Omar M. Basha Yemin Hong Badie Morsi Zhansheng Shi Haolin Jia Li Weng Zhuowu Men Ke Liu Yi Cheng 《American Institute of Chemical Engineers》2015,61(11):3838-3857
The main objective of this study is to predict the performance of an industrial‐scale (ID = 5.8 m) slurry bubble column reactor (SBCR) operating with iron‐based catalyst for Fischer–Tropsch (FT) synthesis, with emphasis on catalyst deactivation. To achieve this objective, a comprehensive reactor model, incorporating the hydrodynamic and mass‐transfer parameters (gas holdup, εG, Sauter‐mean diameter of gas bubbles, d32, and volumetric liquid‐side mass‐transfer coefficients, kLa), and FT as well as water gas shift reaction kinetics, was developed. The hydrodynamic and mass‐transfer parameters for He/N2 gaseous mixtures, as surrogates for H2/CO, were obtained in an actual molten FT reactor wax produced from the same reactor. The data were measured in a pilot‐scale (0.29 m) SBCR under different pressures (4–31 bar), temperatures (380–500 K), superficial gas velocities (0.1–0.3 m/s), and iron‐based catalyst concentrations (0–45 wt %). The data were modeled and predictive correlations were incorporated into the reactor model. The reactor model was then used to study the effects of catalyst concentration and reactor length‐to‐diameter ratio (L/D) on the water partial pressure, which is mainly responsible for iron catalyst deactivation, the H2 and CO conversions and the C5+ product yields. The modeling results of the industrial SBCR investigated in this study showed that (1) the water partial pressure should be maintained under 3 bars to minimize deactivation of the iron‐based catalyst used; (2) the catalyst concentration has much more impact on the gas holdup and reactor performance than the reactor height; and (3) the reactor should be operated in the kinetically controlled regime with an L/D of 4.48 and a catalyst concentration of 22 wt % to maximize C5+ products yield, while minimizing the iron catalyst deactivation. Under such conditions, the H2 and CO conversions were 49.4% and 69.3%, respectively, and the C5+ products yield was 435.6 ton/day. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3838–3857, 2015 相似文献
82.
Laurent Sehabiague Arsam Behkish Mariela Sanoja Badie I. Morsi 《Journal of the Chinese Institute of Chemical Engineers》2008,39(2):169-179
A user-friendly simulator based on a comprehensive computer model for slurry bubble column reactors (SBCRs) for Fischer-Tropsch (F-T) synthesis, taking into account the hydrodynamics, kinetics, heat transfer, and mass transfer was developed. The hydrodynamic and mass transfer data obtained in our laboratories under typical F-T conditions along with those available in the literature were correlated using Back Propagation Neural Network and empirical correlations with high confidence levels. The data used covered wide ranges of reactor geometry, gas distributor, and operating conditions. All reactor partial differential equations, equation parameters and boundary conditions were simultaneously solved numerically.The simulator was systematically used to predict the effects of reactor geometry (inside diameter and height) as well as superficial gas velocity and catalyst concentration on the performance of a large-scale SBCR provided with cooling pipes and operating under F-T conditions with cobalt-supported catalyst and H2/CO = 2. The performance of the SBCR was expressed in terms of CO conversion, liquid hydrocarbon yield, catalyst productivity, and space time yield. The simulator was also used to optimize the reactor geometry and operating conditions in order to produce 10,000 barrels/day (bbl/day) of liquid hydrocarbons. 相似文献
83.
Nadia M. Morsi Nouran Osama Eladawy Abdelfattah A. Abdelkhalek 《Drug development and industrial pharmacy》2019,45(5):787-804
Hydrogels forming in-situ have gained great attention in the area of bone tissue engineering recently, they were also showed to be a good and less invasive alternative to surgically applied ones. The primal focus of this study was to prepare chitosan-glycerol phosphate thermosensitive hydrogel formed in-situ and loaded with risedronate (bone resorption inhibitor) in an easy way with no requirement of complicated processes or large number of equipment. Then we investigated its effectiveness for bone regeneration. In-situ forming hydrogels were prepared using chitosan cross-linked with glycerol phosphate and loaded with risedronate and nano-hydroxyapatite as bone cement. The prepared hydrogels were characterized by analyzing their gelation time at 37?°C, % porosity, swelling index, in-vitro degradation, rheological properties, and in-vitro drug release. Results showed that the in-situ hydrogels prepared using 2.5% (w/v) chitosan cross-linked with 50% (w/v) glycerol phosphate in the ratio (9:1, v/v) reinforced with 20?mg/mL and nano-hydroxyapatite possessed the most sustained drug release profile. This optimized formulation was further evaluated using DSC and FTIR studies, in addition to their morphological properties using scanning electron microscopy. The effect on Saos-2 cell line viability was evaluated also using MTT assay on the optimized hydrogel formulation in addition to their action on cell proliferation using fluorescence microscope. Moreover, calcium deposition on the hydrogel and alkaline phosphatase activity were evaluated. Risedronate-nano-hydroxyapatite loaded hydrogels significantly enhanced the Saos-2 cell proliferation in addition to enhanced alkaline phosphatase activity and calcium deposition. Such results suggest that risedronate-nano-hydroxyapatite loaded hydrogels present great biocompatibility for bone regeneration. Proliferation of cells, as well as deposition of mineral on the hydrogel, was an evidence of the biocompatible nature of the hydrogel. This hydrogel formed in-situ present a good less invasive alternative for bone tissue engineering. 相似文献
84.
High power quality (PQ) level represents one of the main objectives towards smart grid. The currently used PQIs that are a measure of the PQ level are defined under the umbrella of the Fourier foundation that produces unrealistic results in case of non-stationary PQ disturbances. In order to accurately measure those indices, wavelet packet transform (WPT) is used in this paper to reformulate the recommended PQIs and hence benefiting from the WPT capabilities in accurately analyzing non-stationary waveforms and providing a uniform time–frequency sub-bands leading to reduced size of the data to be processed which is a necessity to facilitate the implementation of smart grid. Numerical examples’ results considering non-stationary waveforms prove the suitability of the WPT for PQIs measurement; also the results indicate that Daubechies 10 could be the best candidate wavelet basis function that could provide acceptable accuracy while requiring less number of wavelet coefficients and hence reducing the data size. Moreover, a new time–frequency overall and node crest factors are introduced in this paper. The new node crest factor is able to determine the node or the sub-band that is responsible for the largest impact which could not be achieved using traditional approaches. 相似文献
85.
操作变量对大型浆态床反应器流体力学特性的影响 总被引:9,自引:3,他引:6
研究了系统压力、表观气速和固体颗粒体积分数对浆态床反应器气含率、气泡直径及气液接触面积的影响 ,通过试验得出了气含率和操作变量之间的统计关联式 ,给出了在湍流条件下浆态床反应器中气含率和气体动量之间的关系 相似文献
86.
Jianchao ZHAN Yosry MORSI Hany EI-HAMSHARY Salem S. AL-DEYAB Xiumei MO 《材料科学前沿(英文版)》2016,10(1):90-100
The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications. 相似文献
87.
China is currently the world’s top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels. However, the increasing emissions due to the huge fossil fuels consumption, coupled with oil market instability, could derail China’s economic growth and jeopardize its national energy security. To face such a hurdle, China has been aggressively supporting low-carbon businesses opportunuties over the past decade, has recently announced several plans to cap coal utilization, and is currently the biggest investor in clean energy technologies. Coal-to-Liquid (CTL) is one of the most promising clean coal technologies, offering an ideal solution that can meet China’s energy demands and environmental expectations. It is widely known that the Shenhua Group has pioneered and is currently leading the commercialization of the Direct Coal Liquefaction (DCL) process in China. This paper highlights a part of the joint research effort undertaken by the National Institute of Clean-and-Low-Carbon Energy (NICE) and University of Pittsburgh in order to develop and commercialize the Indirect Coal Liquefaction (ICL) process. In this mission, NICE has built and operated an ICL plant including a large-scale (5.8-m ID and 30-m height) Slurry-Bubble-Column Reactor (SBCR) for Fischer-Tropsch synthesis using iron catalyst. The research, conducted at the University of Pittsburgh over the past few years, allowed building a user-friendly Simulator, based on a comprehensive SBCR model integrated with Aspen Plus and is validated using data from the NICE actual ICL plant. In this paper, the Simulator predictions of the performance of the NICE SBCR, operating with iron and cobalt catalysts under four different tail gas recycle strategies: (1) direct recycle; (2) using a Pressure Swing Adsorption (PSA) unit; (3) using a reformer; and (4) using a Chemical looping Combustion (CLC) process, are presented. It should be mentioned also that our joint research effort has laid the foundation for the design of a commercial-scale SBCR for producing one-million tons per annum of environmentally friendly and ultraclean (no sulfur, no nitrogen and virtually no aromatics) transportation fuels, which could greatly contribute to ensuring China’s national energy security while curbing its lingering emission problems. 相似文献
88.
89.
Ahmed El-Desouky Samuel K. Kassegne Kee S. Moon J. McKittrick K. Morsi 《Journal of Materials Processing Technology》2013,213(8):1251-1257
Spark plasma sintering (SPS) is a process that has stimulated worldwide interest for the rapid consolidation of powder-based materials through the combined effects of electric current and pressure. Recently the localization of SPS has been realized through current activated tip-based sintering (CATS) where electric current is selectively applied to small targeted regions of a green compact/powder bed via a precision controlled electrically conductive small tip. The unique tip-specimen geometry allows for locally controlled temperature and current distributions that can result in microstructural modifications on the micro-scale. The present paper presents for the first time the rapid processing and characterization of micro-scale functionally graded materials in relation to porosity content and size. The effects of initial green density and particle size on the developed micro-scale functionally graded material are discussed. 相似文献
90.
The effect of nine derivatives of salicylanilides on the elastic properties of ultraviolet-aged natural rubber have been investigated. The results are compared with similar blends without additives and also with reference samples containing phenyl salicylate. The compounds showed variable effects, but both o-Cl and p-OCH3 derivatives showed remarkable effects. They both help in the thermal crosslinking. Also, natural rubber samples containing these derivatives showed remarkable stability in tensile stress, elongation, and swelling. 相似文献