首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1297篇
  免费   81篇
  国内免费   20篇
电工技术   18篇
综合类   4篇
化学工业   335篇
金属工艺   37篇
机械仪表   36篇
建筑科学   27篇
能源动力   51篇
轻工业   56篇
水利工程   2篇
无线电   250篇
一般工业技术   239篇
冶金工业   102篇
原子能技术   2篇
自动化技术   239篇
  2023年   11篇
  2022年   24篇
  2021年   39篇
  2020年   18篇
  2019年   26篇
  2018年   33篇
  2017年   32篇
  2016年   38篇
  2015年   35篇
  2014年   72篇
  2013年   116篇
  2012年   65篇
  2011年   81篇
  2010年   72篇
  2009年   86篇
  2008年   72篇
  2007年   71篇
  2006年   58篇
  2005年   42篇
  2004年   39篇
  2003年   37篇
  2002年   34篇
  2001年   22篇
  2000年   21篇
  1999年   16篇
  1998年   48篇
  1997年   29篇
  1996年   19篇
  1995年   17篇
  1994年   16篇
  1993年   13篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   10篇
  1988年   7篇
  1986年   5篇
  1985年   9篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1970年   2篇
排序方式: 共有1398条查询结果,搜索用时 93 毫秒
71.
Several studies have demonstrated that three‐dimensional (3‐D) culture systems influence human embryonic stem cell (hESC) phenotypes and fate choices. However, the effect that these microenvironmental changes have on signaling pathways governing hESC behaviors is not well understood. Here, a 3‐D microwell array was used to investigate differences in activation of developmental pathways between 2‐D and 3‐D cultures of both undifferentiated hESCs and hESCs undergoing initial differentiation in embryoid bodies (EBs). An increased induction into mesoderm and endoderm and differences in expression of genes from multiple signaling pathways that regulate development, including Wnt/β‐catenin, TGF‐β superfamily, Notch, and FGF during EB‐mediated differentiation were observed in 3‐D microwells as compared with the 2‐D substrates. In undifferentiated hESCs, differences in epithelial‐mesenchymal transition phenotypes and the TGFβ/BMP pathway between cultures in 3‐D and 2‐D were also observed. These results illustrate that 3‐D culture influences multiple pathways that may regulate the differentiation trajectories of hESCs. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1225–1235, 2014  相似文献   
72.
Ionic liquids (ILs) with long alkyl substituted groups, including 1-docosanyl-3-methylimidazolium bromide (IL-1) and 1-docosanyl-3-methylimidazolium hexafluorophosphate (IL-2), were synthesized and used to modify the surface of carbon nanofibers (CNF). The nanocomposite film prepared by solution-blending of ionic liquid modified CNF (i-CNF) and ultrahigh molecular weight polyethylene (UHMWPE) displayed better toughness when compared with pure UHMWPE even at very low concentrations (e.g. 0.4 wt%). The effect of ionic liquids on the elongation-to-break ratio of this nanocomposite system was investigated. The ionic liquid with hexafluorophosphate as the anion was more efficient to increase the toughness of UHMWPE due to the improved compatibility of IL with UHMWPE in the polymer matrix than that of the bromide. The rheological behavior of molten nanocomposites revealed that the storage modulus and the complex viscosity decreased with increasing ionic liquid content in the high frequency region. However, a reverse trend was observed when the frequency was less than 0.05 s−1. In-situ monitoring in the change of crystallinity of the nanocomposite during tensile deformation suggested a mechanism of sliding between UHMWPE crystal regions and the surface of carbon nanofibers.  相似文献   
73.
Oxidized cellulose nanofibers (CNF), embedded in an electrospun polyacrylonitrile (PAN) nanofibrous scaffold, were grafted with cysteine to increase the adsorption capability for chromium (VI) and lead (II). Thiol-modified cellulose nanofibers (m-CNF) were characterized by titration, FT-IR, energy dispersive spectroscopy (EDS) and SEM techniques. Static and dynamic Cr(VI) and Pb(II) adsorption studies of m-CNF nanofibrous composite membranes were carried out as a function of pH and of contact time. The results indicated these membranes exhibited high adsorption capacities for both Cr(VI) (87.5 mg/g) and Pb(II) (137.7 mg/g) due to the large surface area and high concentration of thiol groups (0.9 mmol of –SH/gram m-CNF). The morphology and property of m-CNF nanofibrous composite membranes was found to be stable, and they could be used and regenerated multiple times with high recovery efficiency.  相似文献   
74.
A series of aromatic polyimides with pendent triphenylamine group were synthesized from equimolar mixtures of 4,4′-oxydianiline (ODA) and 4-(3,5-diaminobenzamido)triphenylamine (4), 4-(3,5-diaminobenzamido)-4′,4″-di-tert-butyltriphenylamine (t-Bu-4) or 4-(3,5-diaminobenzamido)-4′,4″-dimethoxytriphenylamine (MeO-4) with two aromatic tetracarboxylic dianhydrides (DSDA or 6FDA) via a conventional two-step procedure that included a ring-opening polyaddition to give poly(amic acid)s, followed by chemical imidization. These polyimides exhibited good solubility in polar organic solvents and could be solution-cast into flexible and strong films. They showed excellent thermal stability, with Tg values in the range of 284–309 °C. The polyimides derived from diamines t-Bu-4 and MeO-4 exhibited reversible electrochemical oxidation, accompanied by strong color changes with high contrast ratio and electrochromic stability. For the polyimides derived from diamine 4, the coupling reaction between the triphenylamine radical cations occurred during the oxidative process forming a tetraphenylbenzidine structure, which resulted in an additional oxidation state and color change together with enhanced near-IR absorption at fully oxidized state.  相似文献   
75.
Cathodes with PrBaCo2O5+δ (PBC) and Sm0.5Sr0.5CoO3−δ (SSC) infiltrated on Ce0.9Gd0.1O1.95 (CGO) backbones are prepared using metal nitrates as precursors and ethanol as wetting agent. Electrochemical impedance spectra (EIS) are measured from cathode/CGO/cathode symmetrical cells in 400–650 °C under humidified air. The results indicate that interfacial area specific resistance (ASR) value decreases and then increases with infiltrate loading and minimum values occur at 50 wt.% loading (relative to sum of infiltrate and backbone) for both PBC and SSC infiltrates. ASR values of PBC infiltrated cathodes are lower than that of corresponding SSC infiltrated cathodes in general, and in particular ASR values as low as 1.36 × 10−2 and 2.27 × 10−2 Ω cm2 are obtained at 650 °C in air for 50 wt.% PBC and 50 wt.% SSC infiltrated cathodes, respectively. Conductivity values of CGO electrolyte increase with infiltrate loading and agree with the reported values when the loading reaches 50 wt.%.  相似文献   
76.
Prostate cancer is a major cause of cancer-related mortality in men in developed countries. The compound, 4-acetylantroquinonol B (4AAQB), is isolated from Antrodia cinnamomea (commonly known as Niu-Chang-Chih), which has been shown to inhibit cancer growth. However, the anticancer activity of 4AAQB has not previously been examined in prostate cancer. This study aimed to investigate the effect of 4AAQB on cancer and angiogenesis, as well as to explore its mechanism of action. Human prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) were used in cell viability, cell migration, and cell cycle functional assays to evaluate the anticancer and antiangiogenic efficacy of 4AAQB in vitro. The effects of 4AAQB in vivo were determined using xenograft and angiogenesis models. The signaling events downstream of 4AAQB were also examined. The 4AAQB compound inhibited PC3 cell growth and migration, and reduced in vivo cancer growth, as shown in a subcutaneous xenograft model. Furthermore, 4AAQB inhibited HUVEC migration, tube formation, and aortic ring sprouting; it also reduced neovascularization in a Matrigel implant angiogenesis assay in vivo. The 4AAQB compound also decreased metastasis in the PC3 prostate cancer model in vivo. Serum or vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2), phosphoinositide 3-kinase (PI3K)/Ak strain transforming (Akt), and extracellular signal-regulated kinase ½ (ERK ½) phosphorylation were attenuated by 4AAQB in both PC3 and HUVEC. In conclusion, 4AAQB is a potential candidate for prostate cancer therapy.  相似文献   
77.
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.  相似文献   
78.
Polyimides (PIs) possess excellent mechanical properties, thermal stability, and chemical resistance and can be converted to carbon materials by thermal carbonization. The preparation of carbon nanomaterials by carbonizing PI‐based nanomaterials, however, has been less studied. In this work, the fabrication of PI nanofibers is investigated using electrospinning and their transformation to carbon nanofibers. Poly(amic acid) carboxylate salts (PAASs) solutions are first electrospun to form PAAS nanofibers. After the imidization and carbonization processes, PI and carbon nanofibers can then be obtained, respectively. The Raman spectra reveal that the carbon nanofibers are partially graphitized by the carbonization process. The diameters of the PI nanofibers are observed to be smaller than those of the PAAS nanofibers because of the formation of the more densely packed structures after the imidization processes; the diameters of the carbon nanofibers remain similar to those of the PI nanofibers after the carbonization process. The thermal dissipation behaviors of the PI and carbon nanofibers are also examined. The infrared images indicate that the transfer rates of thermal energy for the carbon nanofibers are higher than those for the PI nanofibers, due to the better thermal conductivity of carbon caused by the covalent sp2 bonding between carbon atoms.  相似文献   
79.
Silicon kerf loss during wafer slicing and the broken quartz crucibles after silicon casting are two major solid wastes from photovoltaic (PV) industry. Especially, the recycle of kerf-loss silicon has become an urgent issue because near 100 000 t of solid wastes are generated every year. One of the most meaningful recycle routes of the kerf-loss silicon is to make silicon nitride crucibles to replace the quartz crucibles. In this study, we demonstrated how this is feasible through acid leaching refining, slip casting, and nitridation. The reaction-bonded silicon nitride (RBSN) crucibles after oxidation were found pure enough for silicon ingot growth. More importantly, they could be reused after ingot growth. With the present examples, the potential of using the kerf-loss silicon for fine ceramics is prominent.  相似文献   
80.
BACKGROUND: Yam products have been marketed for treating postmenopausal syndromes. This study investigated the effects of Dioscorea alata L. cv. Tainung No. 2 (TNG yam) on the bone density of ovariectomised (OVX) female BALB/c mice and the mechanism whereby TNG yam exerted this effect. Sham and OVX control groups were fed a control diet while remaining OVX mice were randomly allocated into experimental diets, i.e. yam (630 g TNG powder kg?1), E2 (20 mg 17β‐oestradiol kg?1), or genistein (2 g genistein kg?1) diet. After 12 weeks of feeding, the uterine weight, indices of bone mass and caecal short chain fatty acids were determined. RESULTS: Neither a yam nor genistein diet restored the OVX‐induced uterine atrophy as did the E2 diet. The femoral and lumbar bone mineral density (BMD) of mice fed the yam diet was greater than those of the sham group, respectively (P < 0.05 vs OVX control), while the lumbar BMD of yam and sham groups were similar (P > 0.05 vs sham). The femoral ash and calcium content in the yam group was significantly greater than that in the OVX control group, respectively (P < 0.05 vs OVX control). The total short chain fatty acid content in the caecum, only enhanced in the yam group, was not correlated with the calcium content of either bone or the plasma calcium level. CONCLUSION: TNG yam prevented loss of BMD and improved bone calcium status without stimulating uterine hypertrophy in OVX BALB/c mice. TNG yam may be beneficial for postmenopausal women for preventing bone loss. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号