首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   35篇
  国内免费   3篇
电工技术   49篇
综合类   2篇
化学工业   234篇
金属工艺   29篇
机械仪表   23篇
建筑科学   12篇
能源动力   49篇
轻工业   43篇
水利工程   2篇
石油天然气   3篇
无线电   45篇
一般工业技术   175篇
冶金工业   29篇
原子能技术   34篇
自动化技术   98篇
  2023年   10篇
  2022年   12篇
  2021年   26篇
  2020年   9篇
  2019年   16篇
  2018年   12篇
  2017年   20篇
  2016年   28篇
  2015年   17篇
  2014年   32篇
  2013年   48篇
  2012年   37篇
  2011年   68篇
  2010年   54篇
  2009年   41篇
  2008年   54篇
  2007年   50篇
  2006年   28篇
  2005年   31篇
  2004年   26篇
  2003年   35篇
  2002年   21篇
  2001年   10篇
  2000年   12篇
  1999年   9篇
  1998年   22篇
  1997年   8篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   5篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   9篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
21.
For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4Ti4O15.  相似文献   
22.
Interfacial tension between demixed solutions of polystyrene + methylcyclohexane has been measured near the critical temperature as a function of temperature using polystyrenes with molecular weights 9000 ~ 1.26 × 106. The critical exponent for the interfacial tension was determined to be about 1.30 for the lower molecular weight systems. However, for higher molecular weights the exponent could not be obtained because the system departed from critical behaviour. Magnitudes of the interfacial tension were proportional to about N?0.44, where N is the polymerization index. Experimental results were compared with the recently-proposed theories and found to be in qualitative agreement. The tricritical theory of polymer solutions was also compared with the experimental results.  相似文献   
23.
Surface modification of diamond-like carbon (DLC) film was performed using a hyperthermal atomic fluorine beam on the purpose of production of hydrophobic surface by maintaining the high hardness of DLC film. By the irradiation of atomic fluorine beam of a 1.0 × 1020 atoms/cm2, the contact angle of a water drop against the DLC surface increased from 73° to 111°. The formation of CF3, CF2 and CF bonding on the modified DLC surface was confirmed from the measurements of X-ray photoelectron spectra and near-edge X-ray absorption fine structure spectra. Irradiation of hyperthermal atomic fluorine beam was concluded to produce insulator fluorine-terminated DLC film, which has high F content on the surface, by the taking of the use of neutral atomic beam as a fluorine source.  相似文献   
24.
The neurotoxicity of the 42-mer and 40-mer amyloid beta peptides (Abeta42 and Abeta40) is closely related to the radicalization at both Tyr10 and Met35. Abeta42 is more neurotoxic than Abeta40. Our previous structural analyses of Abeta42 suggested that Tyr10 and Met35 are brought closer together by the turn at positions 22 and 23, and the S-oxidized radical cation at position 35, which is the ultimate toxic radical species, can be produced effectively through oxidation by the phenoxy radical at position 10. To verify this idea, their separation was measured by site-directed spin labeling (MTSSL) by using ESR spectroscopy. Among the three kinds of Abeta42 derivatives, which are doubly or singly spin-labeled at position 10 and 35, only 10,35-MTSSL-Abeta42 showed a clear dipole coupling in continuous-wave ESR; this suggests that the intramolecular spin labels at position 10 and 35 in Abeta42 are located within approximately 15 A. In contrast, 10,35-MTSSL-Abeta40 did not give such signals. The distance between Tyr10 and Met35 in 10,35-MTSSL-Abeta40, which was successfully measured by pulsed ESR spectroscopy was 30 A long. The difference in the distance between Abeta42 and Abeta40 could explain in part the stronger neurotoxicity of Abeta42 compared to Abeta40.  相似文献   
25.
To investigate the effect of molecular structure on macroscopic flow behavior of polymeric liquid, attempts have been made to embed the microscopic information into the flow simulation. Constitutive equation based on the theory of polymer dynamics is ideal but the theory is still under development. The CONNFFESSIT approach (where microscopic simulation is embedded into calculation grid in macroscopic simulation) is another promising direction but the computational cost is not practical yet. In this study, we propose another simple method using parameter-based bridging where the parameters for phenomenological constitutive equations in macroscopic flow simulation are obtained from coarse-grained molecular simulation. As an example, we performed a simulation of injection molding and examined the effect of molecular weight on warpage of the molded product. We used the primitive chain network simulation to calculate linear viscoelasticity of linear monodispersed polystyrenes from molecular weight. The obtained linear viscoelasticity was converted into the relaxation spectrum and into the flow curve to be used in the macroscopic simulations. From the flow curve, the parameters of an inelastic non-Newtonian constitutive equation were obtained and used for the simulation of filling process. The relaxation spectrum was used to calculate residual stress from the flow profile in the filling process. From the residual stress and thermal shrinkage, warpage of the product was obtained. For the examined thin plate product, significant change in the warpage direction was demonstrated according to the molecular weight of the material. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
26.
The microstructures of fine-grained β-SiC materials with α-SiC seeds annealed either with or without uniaxial pressure at 1900°C for 4 h in an argon atmosphere were investigated using analytical electron microscopy and high-resolution electron microscopy (HREM). An applied annealing pressure can greatly retard phase transformation and grain growth. The material annealed with pressure consisted of fine grains with β-SiC as a major phase. In contrast, the microstructure in the material annealed without pressure consisted of elongated grains with half α-SiC. Energy-dispersive X-ray analysis showed no differences in the amount of segregation of aluminum and oxygen atoms at grain boundaries, but did show a significant difference in the segregation of yttrium atoms at grain boundaries along SiC grains for the two materials. The increased segregation of yttrium ions at grain boundaries caused by the applied pressure might be the reason for the retarded phase transformation and grain growth. HREM showed a thin secondary phase of 1 nm at the grain boundary interface for both materials. The development of a composite grain consisting of a mixture of β/α polytypes during annealing was a feature common to both materials. The possible mechanisms for grain growth and phase transformation are discussed.  相似文献   
27.
Melt viscosity and flow birefringence of bisphenol A-type polycarbonate were measured and analyzed by the application of rubber-like photoelastic theory. The melt viscosity in the Newtonian flow region increased with the molecular weight to the power of 3.4. In polycarbonate, the shear stress of the Newtonian flow region was to 106 dyn/cm2, whereas in PMMA it was at most 3 = 105 dyn/cm2. The flow birefringence δn has a linear relation with shear stress S, that is δn = 5.7 × 10?10 S. The principal polarization difference of flow unit α1 – α2 was 1.62 × 10?23 cm3, which was obtained by the application of the rubber-like elastic theory. In PMMA, it was 3.9 = 10?25 cm3; about 1/40 of that was polycarbonate. The anisotropy of polarizability of the flow unit of polycarbonate was also about 40 times larger than that of PMMA. So the anisotropy reflected the large flow birefringence of the polycarbonate.  相似文献   
28.
High surface area zirconium phosphate in an amorphous phase exhibits high activities for water-related reactions such as hydrolysis of ethyl acetate and esterification of acetic acid with ethanol. The zirconium phosphate is insoluble during the reaction, is recoverable by simple filtration, and can be reused at least five times without any treatment.  相似文献   
29.
The atomic and electronic structures of inversion domain boundaries in Mn‐Al dual‐doped ZnO (Zn0.89Mn0.1Al0.01O) have been investigated. Using atomic‐resolution scanning transmission electron microscopy, a head‐to‐head c‐axis configuration and cation stacking sequence of αβαβ|γ|αβαβ along the c‐axis were observed at the basal‐plane inversion domain boundary. Energy‐dispersive X‐ray spectroscopy and electron energy‐loss spectroscopy revealed significant localization of Mn and minor localization of Al at the basal‐plane inversion domain boundary. Based on experimental findings, a Mn‐doped basal‐plane inversion domain boundary slab model was constructed and refined by first principles calculations. The model is in agreement with atomic‐resolution images. The local electronic density of states of the slab model basal‐plane inversion domain boundary shows a hybridization of the Mn d and O p states within the valence band and localized Mn d states in the conduction band. The thermoelectric properties of Zn0.99?xMnxAl0.01O ceramics have been reported in a previous work. In this work, the effects of inversion domain boundaries on the thermoelectric properties are discussed. In comparison to Zn0.99?xMnxAl0.01O ceramics with x≤0.05, inversion domain boundaries in Zn0.89Mn0.1Al0.01O caused thermal and electrical conductivity reduction due to interface scattering of phonons and electrons. The Seebeck coefficient increased, suggesting electron filtering at inversion domain boundaries.  相似文献   
30.
The synergistic effect of methyltrioctylammonium chloride (QCI) on the extraction of Np(V) by 1-phenyl-3-methyl-4-benzoyl-pyrazolone(HP) in benzene is studied over the pH range 2-6. This system extracts Np(V) better than any previously reported. The interaction of the extractants and monomer-dimer equilibria affect the distribution behavior of Np(V) in a complicated manner. Analysis of the results suggests that NpO2 + (M+) is extracted as mixed dimers, (QMP2QCl)o and (QMP2QP)o.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号