This paper studies the stability analysis problem for time-varying delay systems. An appropriate Lyapunov-Krasovskii functional (LKF) is constructed where its derivative is a quadratic polynomial function of the delay. A novel negative condition of the mentioned quadratic function with two variable parameters is developed to ensure that the LKF derivative is negative, reducing conservatism on some similar results. Besides, an extended version of Bessel-Legendre inequality is introduced to be employed in the stability analysis of time-varying delay systems. Then, some stability criteria with less conservatism are derived for two kinds of the time-varying delay. Finally, the effectiveness of the proposed stability criteria is demonstrated through three examples.
A wake-up receiver with high energy efficiency and low power consumption is proposed for solving the power consuming problems of wireless nodes communication in the Internet of Things. The proposed wake-up receiver based on the wake-up mechanism can effectively schedule the network nodes communication, and use the simple envelope detection structure to achieve frequency down-conversion, which can flexibly manage energy and reduce power consumption. Based on UMC 65nm CMOS process technology, the wake-up receiver is designed and simulated. The results show that it can achieve S11 of -21dBm and a sensitivity of -75dBm at a data rate of 1Mb/s, when operating at the central frequency of 780MHz and input signal adopting an on-off keying (OOK) modulation, and the power consumption is 82μW at 1.2V voltage supply. 相似文献
A hybrid remotely operated underwater vehicle (HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level, a self-repairing control system (SRCS) has been designed. It consists of two basic technologies, fault diagnosis and isolation (FDI) and reconfigurable control. For F'DI, a model-based hierarchical fault diagnosis system is designed for the HROV. Then, control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies, it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, an assessment of the HROV' s survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS, we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles. 相似文献
With the motivation of seamlessly extending wireless sensor networks to the external environment, service-oriented architecture comes up as a promising solution. However, as sensor nodes are failure prone, this consequently renders the whole wireless sensor network to seriously faulty. When a particular node is faulty, the service on it should be migrated into those substitute sensor nodes that are in a normal status. Currently, two kinds of approaches exist to identify the substitute sensor nodes: the most common approach is to prepare redundancy nodes, though the involved tasks such as maintaining redundancy nodes, i.e., relocating the new node, lead to an extra burden on the wireless sensor networks. More recently, other approaches without using redundancy nodes are emerging, and they merely select the substitute nodes in a sensor node’s perspective i.e., migrating the service of faulty node to it’s nearest sensor node, though usually neglecting the requirements of the application level. Even a few work consider the need of the application level, they perform at packets granularity and don’t fit well at service granularity. In this paper, we aim to remove these limitations in the wireless sensor network with the service-oriented architecture. Instead of deploying redundancy nodes, the proposed mechanism replaces the faulty sensor node with consideration of the similarity on the application level, as well as on the sensor level. On the application level, we apply the Bloom Filter for its high efficiency and low space costs. While on the sensor level, we design an objective solution via the coefficient of a variation as an evaluation for choosing the substitute on the sensor level. 相似文献