全文获取类型
收费全文 | 48225篇 |
免费 | 13399篇 |
国内免费 | 125篇 |
专业分类
电工技术 | 1040篇 |
综合类 | 157篇 |
化学工业 | 18513篇 |
金属工艺 | 625篇 |
机械仪表 | 1055篇 |
建筑科学 | 2101篇 |
矿业工程 | 72篇 |
能源动力 | 1150篇 |
轻工业 | 7490篇 |
水利工程 | 330篇 |
石油天然气 | 123篇 |
武器工业 | 13篇 |
无线电 | 8683篇 |
一般工业技术 | 12922篇 |
冶金工业 | 1824篇 |
原子能技术 | 103篇 |
自动化技术 | 5548篇 |
出版年
2024年 | 15篇 |
2023年 | 138篇 |
2022年 | 206篇 |
2021年 | 463篇 |
2020年 | 1622篇 |
2019年 | 3307篇 |
2018年 | 3290篇 |
2017年 | 3593篇 |
2016年 | 4050篇 |
2015年 | 4155篇 |
2014年 | 4152篇 |
2013年 | 5518篇 |
2012年 | 3190篇 |
2011年 | 2850篇 |
2010年 | 3018篇 |
2009年 | 2961篇 |
2008年 | 2501篇 |
2007年 | 2341篇 |
2006年 | 2043篇 |
2005年 | 1684篇 |
2004年 | 1635篇 |
2003年 | 1614篇 |
2002年 | 1516篇 |
2001年 | 1336篇 |
2000年 | 1291篇 |
1999年 | 663篇 |
1998年 | 539篇 |
1997年 | 373篇 |
1996年 | 255篇 |
1995年 | 174篇 |
1994年 | 150篇 |
1993年 | 175篇 |
1992年 | 99篇 |
1991年 | 97篇 |
1990年 | 84篇 |
1989年 | 58篇 |
1988年 | 58篇 |
1987年 | 59篇 |
1986年 | 69篇 |
1985年 | 43篇 |
1984年 | 38篇 |
1983年 | 28篇 |
1982年 | 15篇 |
1981年 | 43篇 |
1980年 | 23篇 |
1979年 | 23篇 |
1978年 | 28篇 |
1977年 | 41篇 |
1976年 | 45篇 |
1975年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
101.
Organic‐acid‐catalyzed sol–gel route for preparing poly(methyl methacrylate)–silica hybrid materials
Jui‐Ming Yeh Kuan‐Yeh Huang Chung‐Feng Dai B. G. Chand Chang‐Jian Weng 《应用聚合物科学杂志》2008,110(4):2108-2114
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
102.
Elżbieta Chmiel‐Szukiewicz 《应用聚合物科学杂志》2008,109(3):1708-1713
Attempts of obtaining of polyurethane foams using polyetherols with 1,3‐pyrimidine ring (obtained in reactions of 6‐aminouracil with oxiranes) are reported. Properties of the foams are investigated, especially their thermal stability. The foams show an improved thermal stability up to 200°C for a long time. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
103.
Sodium sulfonate‐terminated dendritic poly(ester‐amine) (SPEA) was synthesized by sulfonation of acrylic double bond‐terminated dendritic poly(ester‐amine) (APEA) with sodium hydrogen sulfite (NaHSO3) in mixture of diglycol and 2‐butanone under normal pressure. The structure of SPEA was characterized by IR, 1H‐NMR, and elemental analysis. SPEA was water‐soluble. 1.0–40.0% (mass) SPEA aqueous solutions appeared as dilatant fluid. When pH value varied from 1.5 to 12.0, the viscosity of 1–5% (mass) SPEA aqueous solutions changed very small, and the electric conductivity almost kept stable within pH 3.0–10.0. The relationship between the viscosity and the concentration of SPEA water solutions was similar to that of NaCl water solutions. The surface tension of SPEA water solutions was lower than that of polyethylene glycol 2000 water solutions with the same concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
104.
Eun‐Soo Park 《应用聚合物科学杂志》2008,110(3):1723-1729
Silicone rubber (SR) foams were prepared by the peroxide curing of a silicone compound with 2,4‐dichlorobenzoyl peroxide (DCBP), di‐t‐butyl peroxide (DTBP), or 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (DBPH) in the presence of 2,2′‐azobisisobutyronitrile (AIBN) as a blowing agent. The cells were formed in the foam as a result of nitrogen produced by the decomposition of AIBN during the foaming process. The cell size, hardness, and tensile properties of the SR foams were examined as a function of the peroxide concentration. When the peroxide concentration increased, the hardness and tensile strength of the SR foams increased, whereas the cell size and elongation at break decreased. The antibacterial activity of the prepared foams was also evaluated via their effects on Staphylococcus aureus and Escherichia coli. The peroxide‐cured SR foams had antibacterial activity because a toxic residue was generated by the peroxide decomposition. The foam prepared by the AIBN/DCBP system showed more antibacterial activity than the AIBN/DBPH and AIBN/DTBP ones. However, after postcuring at 250°C for 2 h, the antibacterial activity of the SR foams significantly decreased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
105.
In this work, we investigate the linear viscoelastic response of high molecular weight ethylene/1‐hexene copolymers, characterized by a narrow molecular weight distribution and comonomer content in the range from 0 to 10 mol %. A variation in the entanglement plateau modulus has been found in agreement with the recently developed packing length model. The packing model applied to viscoelastic data suggests decreased values of the characteristic ratio, accordingly with recent computer simulation results. The flow activation energy increases as the side chain content increases. This feature is thought to be related to the mobility of the molecules. The presence of side branches due to the comonomer hinders the mobility of the molecules, and increases the thermal barrier for the segmental motion. Then in the comonomer content range studied, the increase of the flow activation energy goes parallel with a decrease in the characteristic ratio. This result suggests that more parameters than only the stiffness of the chain modulate the thermal dependence of viscoelastic properties. A more refined study is necessary combining experiments with computer simulations in order to elucidate these aspects. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
106.
Associations (dimer or aggregate) of anthracene (An) fluorophores tend to interrupt the monomer emission and reduce the quantum yield (ΦPL); therefore, poly(methyl methacrylate) (PMMA) chain was used in this study to chemically link to anthracene and to block the mutual associations among the anthracene fluorophores. With this aim, the target polymers were prepared by anionic polymerizations with 9,10‐dibromoanthracene/s‐butyllithium as initiating system to proceed polymerizations of methyl methacrylate (MMA) directly or in the presence of 1,1‐diphenylethylene (DPE). Use of DPE before addition of MMA produces stable initiating anionic species and avoids potential side reactions during polymerization; however, it also introduces four β‐phenylene rings around the central anthracene ring, which interfere with the corresponding emission pattern and reduce the ΦPL (32%) value due to potential interactions between phenylene rings and anthracene. On the contrast, polymerization without participation of DPE results in polymer with central anthracene ring directly connected to two PMMA chains, which gives clean vibronic emission pattern with limited association emissions and enhanced ΦPL (52%) value. Physical blending of anthracene by PMMA is less efficient to restrain the associations and results in a film of lower ΦPL (20%). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
107.
F. R. Perioto M. E. T. Alvarez W. A. Araujo M. R. Wolf‐Maciel R. Maciel Filho 《应用聚合物科学杂志》2008,110(6):3544-3551
A new calculation procedure for free‐volume parameters is considered in this work by using viscosity prediction methods and the Levenberg‐Marquardt calculation scheme. All parameters used in the Vrentas–Duda free‐volume theory can be estimated from pure component properties. The prediction results are compared with experimental data for some polymer/solvent systems. The diffusion coefficient calculated by Vrentas–Duda theory can be used in the modeling of membrane separation processes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
108.
This study analyzed the effects of polyurethane (PU) resin treatments on surface homogeneity, dimensional stability, and finishing performances of medium‐ and small‐diameter softwoods produced in Taiwan. Two‐pack PU resins were prepared by combing short castor oil‐modified alkyd resin serving as a polyol with polymeric 4,4′‐diphenymethane diisocyanate (PMDI) serving as a hardener, by the molar ratio of NCO/OH+COOH of 1.2. Four types of short oil‐modified alkyd resins with different polyhydric alcohols (glycerin and pentaerythritol) and polybasic acids (phthalic anhydride and isophthalic acid) were synthesized. Three kinds of medium‐ and small‐diameter softwoods, including China fir, Taiwanina, and Japanese fir with a diameter of 10–15 cm were obtained from Hui‐Sun Forest Station, Taiwan. The wood coating of nitrocellulose (NC) lacquer including sanding sealer and top clear was used. Results show that the surface hardness, homogeneity, moisture excluding efficiency, and antiswelling efficiency of woods were enhanced by PU resin treatments. Among all the PU resins, the isophthalic acid and pentaerythritol‐containing PU resin (IPA‐P‐MDI) achieved the best improved efficiency on dimensional stability of woods. Results of two types of finishing procedure, i.e. NC lacquer sanding sealer plus top clear and top clear only, applied onto the PU‐treated woods revealed that the hardness, adhesion, and durability of NC lacquer films on the PU‐treated wood were superior to those of untreated one, especially for top clear finishing alone. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
109.
Polymer/Silica nanocomposite latex particles were prepared by emulsion polymerization of methyl methacrylate (MMA) with dimethylaminoethyl methacrylate (DM). The reaction was performed using a nonionic surfactant and in the presence of silica nanoparticles as the seed. The polymer‐coated silica nanoparticles with polymer content and number average particle sizes ranged from 32 to 93 wt % and 114–310 nm, respectively, were obtained depending on reaction conditions. Influences of some synthetic conditions such as MMA, DM, surfactant concentration, and the nature of initiator on the coating of the silica nanoparticles were studied. Electrostatic attraction between anionic surface of silica beads and cationic amino groups of DM is the main driving force for the formation of the nanocomposites. It was demonstrated that the ratio of DM/MMA is important factor in stability of the system. The particle size, polymer content, efficiency of the coating reaction, and morphology of resulted nanocomposite particles showed a dependence on the amount of the surfactant. Zeta potential measurements confirmed that the DM was located at the surface of the nanocomposites particles. Thermogravimeteric analysis indicated a relationship between the composition of polymer shell and polymer content of the nanocomposites. The nanocomposites were also characterized by FTIR and differential scanning calorimetry techniques. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
110.
A method for the synthesis of novel sulfated ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed. SBS was first epoxidized by performic acid in the presence of a phase‐transfer catalyst; this was followed by a ring‐opening reaction with an aqueous solution of alkali salt of bisulfate. The optimum conditions for the ring‐opening reaction of the epoxidized SBS with an aqueous solution of KHSO4 were studied. During the ring‐opening reaction, both phase‐transfer catalyst and ring‐opening catalyst were necessary to enhance the conversion of epoxy groups to ionic groups. The products were characterized with Fourier transform infrared spectrophotometry and transmission electron microscopy (TEM). After the potassium ions of the ionomer were substituted with lead ions, the lead sulfated ionomer exhibited dark spots under TEM. Some properties of the sulfated ionomer were studied. With increasing ionic groups or ionic potential of the cations, the water absorbency and emulsifying volume of the ionomer and the intrinsic viscosity of the ionomer solution increased, whereas the oil absorbency decreased. The sulfated ionomer possessed excellent emulsifying properties compared with the sulfonated SBS ionomer. The sodium sulfated ionomers in the presence of 10% zinc stearate showed better mechanical properties than the original SBS. When the ionomer was blended with crystalline polypropylene, a synergistic effect occurred with respect to the tensile strength. The ionomer behaved as a compatibilizer for blending equal amounts of SBS and oil‐resistant chlorohydrin rubber. In the presence of 3% ionomer, the blend exhibited much better mechanical properties and solvent resistance than the blend without the ionomer. SEM photographs indicated improved compatibility between the two components of the blend in the presence of the ionomer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献