首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   12篇
  国内免费   4篇
电工技术   2篇
综合类   1篇
化学工业   81篇
金属工艺   4篇
机械仪表   4篇
建筑科学   3篇
矿业工程   3篇
能源动力   23篇
轻工业   2篇
水利工程   2篇
石油天然气   2篇
无线电   25篇
一般工业技术   111篇
冶金工业   9篇
原子能技术   1篇
自动化技术   23篇
  2023年   2篇
  2022年   24篇
  2021年   18篇
  2020年   11篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   15篇
  2015年   4篇
  2014年   20篇
  2013年   32篇
  2012年   19篇
  2011年   19篇
  2010年   12篇
  2009年   15篇
  2008年   24篇
  2007年   16篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
11.
International Journal of Coal Science & Technology - The study reviews the process of oxidative desulphurization of high-sulphur Ukrainian lignite, which was performed by coal treatment using...  相似文献   
12.
13.
Palsa peatlands occupy extensive areas in Western Siberia which is one of the most paludified flat lowlands of the world. Climatic changes in Western Siberia are more dramatic compared with other northern regions, and changes in palsa landscapes are more notable due to the severe continental climate here. The distribution, peculiarities and climate-indication capacities of West Siberian palsas are poorly known outside Russia. Thus, Western Siberia is one of the most interesting vast natural polygons for studying climate-driven changes in the landscapes. This paper aims to fill the gap in knowledge on West Siberian palsas and their capacity as a climate regulator. We present issues in distribution, typology and cyclic development of palsa peatlands and their actual climate-driven changes. We also analyse the role of palsas in the atmospheric cycle of CO2, and the hydrology of the palsa regions.  相似文献   
14.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   
15.
The contraction/swelling transition of anionic PNIPAM-co-AAA particles can be manipulated by light using interactions with cationic azobenzene-containing surfactant. In this study the influence of pH-buffers and their concentrations, the charge density (AAA content) in microgel particles as well as the spacer length of the surfactant on the complex formation between the microgel and surfactant is investigated. It is shown that the presence of pH buffer can lead to complete blocking of the interactions in such complexes and the resulting microgel contraction/swelling response. There is a clear competition between the buffer ions and the surfactant molecules interacting with microgel particles. When working in pure water solutions with fixed concentration (charge density) of microgel, the contraction/swelling of the particles is controlled only by relative concentration (charge ratio) of the surfactant and AAA groups of the microgel. Furthermore, the particle contraction is more efficient for shorter spacer length of the surfactant. The onset point of the contraction process is not affected by the surfactant hydrophobicity. This work provides new insight into the interaction between microgel particles and photo-sensitive surfactants, which offers high potential in new sensor systems.  相似文献   
16.
Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835–841 cm−1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10–6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.  相似文献   
17.
18.
19.
Convective condensation of pure ethanol vapor inside a smooth tube of inner diameter 4.8 mm and of length 200 mm is studied. The experiments have been carried out at temperature 58°C corresponding to the pressure of 440 mbar, the vapor mass velocity varying from 0.24 to 2.04 kg/(m2 s). The dependency of the Heat Transfer Coefficient (HTC) is investigated experimentally both subject to the temperature difference between the saturated vapor and the wall and subject to the condenser inclination. The results show that the HTC reduces with growth of the temperature difference. The dependency of the HTC on inclination has a maximum in the range 15°–35° due to the complex gravity drainage mechanism of the condensed liquid. The results could be useful for development of compact effective cooling systems for space and ground application.  相似文献   
20.
The separation of the individual contributions of aerosol and gases to the total attenuation of radiation through the atmosphere has been the subject of much scientific investigation since remote sensing experiments first began. We describe a new scheme to account for the spectral variation of the aerosol extinction in the inversion of transmission data from occultation measurements. Because the spectral variation of the aerosol extinction is generally unknown,the inversion problem is underdetermined and cannot be solved without a reduction in the number of unknowns in the set of equations used to describe the attenuation at each wavelength. This reduction can be accomplished by a variety of methods, including use of a priori information, the parameterization of the aerosol spectral attenuation, and the specification of the form of the aerosol size distribution. We have developed and implemented a parameterization scheme based on existing empirical and modeled information about the microphysical properties of aerosols. This scheme employs the eigenvectors from an extensive set of simulations to parameterize the aerosol extinction coefficient for incorporation into the inversion algorithm. We examine the accuracy of our method using data sets containing over 24,000 extinction spectra and compare it with that of another scheme that is currently implemented in the Polar Ozone and Aerosol Measurement (POAM) satellite experiment. In simulations using 80 wavelengths in the UV-visible-near-IR spectral range of the Stratospheric Aerosol and Gas Experiment III (SAGE) instrument, we show that, for our optimal parameterization, errors below 1% are observed in 80% of cases, whereas only approximately 20% of all cases are as accurate as this in a quadratic parameterization employing the logarithm of the wavelength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号