首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   46篇
  国内免费   1篇
电工技术   7篇
综合类   1篇
化学工业   255篇
金属工艺   50篇
机械仪表   26篇
建筑科学   16篇
能源动力   52篇
轻工业   69篇
水利工程   7篇
石油天然气   3篇
无线电   37篇
一般工业技术   113篇
冶金工业   27篇
原子能技术   3篇
自动化技术   62篇
  2024年   1篇
  2023年   12篇
  2022年   31篇
  2021年   42篇
  2020年   26篇
  2019年   31篇
  2018年   32篇
  2017年   42篇
  2016年   37篇
  2015年   23篇
  2014年   20篇
  2013年   59篇
  2012年   34篇
  2011年   51篇
  2010年   32篇
  2009年   37篇
  2008年   39篇
  2007年   32篇
  2006年   23篇
  2005年   16篇
  2004年   10篇
  2003年   4篇
  2002年   11篇
  2001年   6篇
  2000年   1篇
  1999年   8篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1978年   3篇
排序方式: 共有728条查询结果,搜索用时 15 毫秒
31.
Using various fractions of poly(ethyl methacrylate) (PEMA) and poly(vinyl acetate) (PVAc) of very narrow molecular weight distribution, a very wide range of 2–120 of molecular weight ratio M¯ν PEMA/M¯ν PVAc, (M¯ν)r was obtained. Studies of some tensile mechanical properties of films of the blends produced from solution on mercury confirmed strong dependence of the improvements of PVAc properties for blend with 18% PEMA on (M¯ν)r, especially in the range 5 ≤ (M¯ν)r < 100. The density of the films of the blend was much higher than those of the individual polymers and increased monotonically with (M¯ν)r. Optical micrographs of the films of the blends showed interactions between the two polymers with 18% PEMA composition, which appears to be more intimate as (M¯ν)r increases, as further evidence of compatibility and miscibility of the two polymers.  相似文献   
32.
A new pseudoreceptor modeling method (PRPS) was applied to the refinement of a homology model of the human histamine H4 receptor (H4R), the prediction of a ligand binding site, and virtual screening. Retrieval of two new H4R ligands demonstrates the biological relevance of the pseudoreceptor model and provides a means for finding new hits and leads in the early phases of drug discovery.

  相似文献   

33.
Supported nickel oxide based catalysts were prepared by wetness impregnation method for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 °C. Fe/Co/Ni (10:30:60)–Al2O3 and Pr/Co/Ni (5:35:60)–Al2O3 catalysts were revealed as the most potential catalysts, which yielded 2.9% and 6.1% of CH4 at reaction temperature of 300 °C, respectively. From XPS, Ni2O3 and Fe3O4 were suggested as the surface active components on the Fe/Co/Ni (10:30:60)–Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/Co/Ni (5:35:60)–Al2O3 catalyst.  相似文献   
34.
This article presents a mathematical model and a computational algorithm for the time domain solution of boring process dynamics. The model is developed in a modular form; it includes a workpiece geometry and surface topography module, a kinamatics and tool position module, a dynamic chip load module, a dynamic cutting force prediction module and a structural dynamics module. The time domain model takes cutting process parameters, tool and workpiece geometries and modal parameters of the structure as inputs. It predicts instantanous cutting forces and vibrations along the machining time, and machined workpiece topography as outputs. Some of the simulated and experimental results for various cutting conditions are presented and compared for validation purposes.  相似文献   
35.
36.
MMA (methyl methacrylate) was polymerized in different ATRP systems using the different ligands of HMTETA (1, 1, 4, 7, 10, 10, hexamethyltriethylenetetraamine), TMEDA (N,N,N′,N′-Tetramethylethylenediamine) with copper salts (CuBr/CuBr2) and EBriB was used as an initiator in toluene at a reaction temperature of 80 °C. Both conventional and a low catalyst to initiator ratios ranging from 1/1 to 0.01/1 were compared in this study. All four of the ATRP methods, such as normal, reverse, AGET and ATRP using a high oxidation state metal complex without any additives, were evaluated at different conditions. The ATRP using a high oxidation state metal system in the absence of a conventional radical initiator like AIBN, which is used in reverse ATRP, or reducing agents such as Sn (EH)2 in AGET ATRP was a better controlled system in terms of both the catalytic activity and controllability (PDI ∼ 1.2).  相似文献   
37.
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.  相似文献   
38.
There is currently considerable interest in developing stiff, strong, tough, and heat resistant poly(lactide) (PLA) based materials with improved melt elasticity in response to the increasing demand for sustainable plastics. However, simultaneous optimization of stiffness, strength, and toughness is a challenge for any material, and commercial PLA is well-known to be inherently brittle and temperature-sensitive and to show poor melt elasticity. In this study, we report that high-shear mixing with cellulose nanocrystals (CNC) leads to significant improvements in the toughness, heat resistance, and melt elasticity of PLA while further enhancing its already outstanding room temperature stiffness and strength. This is evidenced by (i) one-fold increase in the elastic modulus (6.48 GPa), (ii) 43% increase in the tensile strength (87.1 MPa), (iii) one-fold increase in the strain at break (∼6%), (iv) two-fold increase in the impact strength (44.2 kJ/m2), (v) 113-fold increase in the storage modulus at 90°C (787.8 MPa), and (vi) 103-fold increase in the melt elasticity at 190°C and 1 rad/s (∼105 Pa) via the addition of 30 wt% CNC. It is hence possible to produce industrially viable, stiff, strong, tough, and heat resistant green materials with improved melt elasticity through high-shear mixing.  相似文献   
39.
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号