首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432214篇
  免费   29457篇
  国内免费   15935篇
电工技术   21684篇
技术理论   46篇
综合类   27192篇
化学工业   69790篇
金属工艺   25169篇
机械仪表   25360篇
建筑科学   29613篇
矿业工程   12096篇
能源动力   10780篇
轻工业   27102篇
水利工程   7954篇
石油天然气   23694篇
武器工业   2830篇
无线电   47099篇
一般工业技术   54002篇
冶金工业   20516篇
原子能技术   3893篇
自动化技术   68786篇
  2024年   1163篇
  2023年   5244篇
  2022年   9207篇
  2021年   13719篇
  2020年   10249篇
  2019年   8362篇
  2018年   22628篇
  2017年   22907篇
  2016年   18986篇
  2015年   14337篇
  2014年   17650篇
  2013年   21110篇
  2012年   25740篇
  2011年   34053篇
  2010年   30030篇
  2009年   26247篇
  2008年   27062篇
  2007年   27169篇
  2006年   20287篇
  2005年   18851篇
  2004年   13087篇
  2003年   11858篇
  2002年   10453篇
  2001年   8937篇
  2000年   8972篇
  1999年   9472篇
  1998年   7239篇
  1997年   6168篇
  1996年   5877篇
  1995年   4804篇
  1994年   3887篇
  1993年   2630篇
  1992年   2079篇
  1991年   1583篇
  1990年   1223篇
  1989年   997篇
  1988年   823篇
  1987年   486篇
  1986年   390篇
  1985年   237篇
  1984年   187篇
  1983年   140篇
  1982年   126篇
  1981年   72篇
  1980年   95篇
  1968年   46篇
  1966年   45篇
  1965年   45篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
161.
针对高可靠度机载多余度EWIS各组成部分寿命服从指数分布但参数未知的情况,提出采用无失效数据可靠度分析方法评估EWIS的可靠度水平。通过Monte-Carlo仿真方法对连接形式为“先并联、后串联”EWIS各组成部分寿命进行抽样,利用“最小最大值”方法获得系统寿命的抽样值,用概率纸检验法初步判断EWIS寿命是否服从威布尔分布,再用Pearson拟合优度检验法判断EWIS寿命是否服从威布尔分布。结合无故障飞行时间的样本值与EWIS寿命服从威布尔分布的假设,采用无失效数据分析方法评估EWIS的可靠度水平。研究方法对机载多余度EWIS无失效数据可靠度分析有一定的贡献。  相似文献   
162.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
163.
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28-C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.  相似文献   
164.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
165.
Li  Ruyi  Wang  Yang 《Catalysis Letters》2022,152(6):1742-1751
Catalysis Letters - Inspired by the discovery of the special structures of Ti-doped boron nitride fullerenes [(2019) Nat Commun 10: 4908], we herein present a computational investigation of...  相似文献   
166.
Wu  Zheng  Meng  Xuan  Shi  Li  Liu  Naiwang 《Journal of Porous Materials》2022,29(2):493-500
Journal of Porous Materials - In this work, a trifluoromethanesulfonic acid (TFOH) modified clay (TFOH-Clay) was developed for the removal of trace olefins in heavy naphtha. 5%TFOH-Clay can...  相似文献   
167.
168.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
169.
170.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号