排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
以钢板混凝土组合剪力墙-钢连梁外肋板节点为研究对象,利用ABAQUS建立三重非线性有限元模型,考虑了不同外肋板高厚比、连接板宽厚比和外包钢板厚度对其抗震性能的影响.结果表明:外肋板墙梁节点滞回曲线有一定的捏缩现象,延性及耗能能力均满足抗震要求;外肋板高厚比由9.375降至5.357,节点模型的延性系数、能量耗散系数和初始刚度变化均不足8%;在连接板宽度为150 mm时,较大宽厚比的模型延性较好;外包钢板厚度由10 mm变化到4 mm时,节点峰值荷载降低约16%,但模型刚度退化变缓、延性性能提高. 相似文献
22.
23.
采用有限元分析方法,以螺栓直径和螺栓间距、C型钢屈服强度、厚度和截面高度、节点板厚度等为参数,建立梁柱抗弯节点的三维非线性有限元模型,对影响节点受力性能的因素进行了分析,并在此基础上对这种连接节点提出了设计建议。 相似文献
24.
为了研究H形钢部分包裹混凝土(PEC)组合中长柱的极限承载力,用Q235B和Q345两种钢材制作12个PEC中长柱,对其进行轴心受压承载力试验,试验主要考虑含钢率、混凝土强度等因素。研究分析了焊接H形钢部分包裹混凝土组合中长柱的轴心受压极限承载力、荷载-位移曲线,对试件的承载力和稳定系数进行了理论和试验结果的对比。结果表明:焊接H形钢部分包裹混凝土组合中长柱的破坏模式有混凝土被压碎、柱整体弯曲、柱翼缘局部屈曲;在试验长度范围内,PEC柱承载力的影响因素主要有含钢率和混凝土强度等级,含钢率越大承载力越高,高强度混凝土可以大幅提高PEC柱的承载力;按照叠加原理公式计算的PEC柱承载力基本都低于试验极限承载力,试验得到的整体稳定系数都高于按《钢结构设计标准》(GB 50017—2017)得到的稳定系数,偏于安全;高强度钢和低强度等级混凝土不能很好地发挥协同作用,低强度等级混凝土只起到填充作用,强度发挥很小。 相似文献
25.
26.
27.
通过有限元软件ABAQUS对基于外肋板连接的联肢钢板组合剪力墙结构以钢连梁的变形特征、耦连比及剪力墙轴压比等参数进行数值模拟分析,研究结构塑性发展、抗震性能、外肋板应力分布及恢复力特性。结果表明:该结构的抗震性能良好,滞回性能较强,塑性和变形能力也比较好。弯曲屈服型连梁耦连比在30%~60%之间、剪力墙轴压比在0.3~0.5之间时;剪切屈服型连梁耦连比设置在20%~50%之间、剪力墙轴压比小于0.3时,结构的延性、耗能和承载力均表现良好,外肋板应力也比较小。建立的恢复力模型骨架曲线可作为基于外肋板连接的联肢钢板组合剪力墙结构弹塑性反应分析的计算模型。 相似文献
28.
29.
为了深入研究基于装配式交叉U型连接件的钢板混凝土组合剪力墙-钢梁节点的力学性能,采用精细化通用有限元软件ABAQUS 6.14对基于装配式交叉U型连接件的钢板混凝土组合剪力墙-钢梁节点模型进行了单调荷载和低周反复荷载作用下的数值模拟,研究了U型板厚度、U型板长度以及钢梁跨高比对该节点力学性能的影响。结果表明:基于装配式交叉U型连接件的钢板混凝土组合剪力墙-钢梁节点具有良好的塑性变形能力和抗拉承载力,各节点模型的滞回性能良好,等效粘滞阻尼系数在0.302 9~0.400 1之间,具有良好的耗能能力;U型板长度对节点初始刚度和能量耗散影响不明显;U型板厚度在12 mm左右时,节点模型的延性及耗能能力均表现良好;随着钢梁跨高比的增加,节点的转动刚度增加,耗能能力显著提高,延性增加。 相似文献
30.
本文采用有限元分析方法,以螺栓直径和螺栓间距、C型钢屈服强度、厚度和截面高度、节点板厚度等为参数。建立梁柱抗弯节点的三维非线形有限元模型,对影响节点受力性能的因素进行分析,并在此基础上对这种连接节点提出了设计建议。 相似文献