全文获取类型
收费全文 | 109篇 |
免费 | 19篇 |
国内免费 | 49篇 |
专业分类
电工技术 | 19篇 |
综合类 | 14篇 |
化学工业 | 28篇 |
金属工艺 | 2篇 |
机械仪表 | 3篇 |
建筑科学 | 2篇 |
矿业工程 | 3篇 |
能源动力 | 4篇 |
轻工业 | 9篇 |
水利工程 | 2篇 |
石油天然气 | 3篇 |
无线电 | 2篇 |
一般工业技术 | 6篇 |
冶金工业 | 1篇 |
原子能技术 | 77篇 |
自动化技术 | 2篇 |
出版年
2023年 | 1篇 |
2022年 | 5篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 7篇 |
2018年 | 7篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 10篇 |
2014年 | 25篇 |
2013年 | 27篇 |
2012年 | 15篇 |
2011年 | 5篇 |
2010年 | 9篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 7篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 3篇 |
2001年 | 2篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1980年 | 1篇 |
排序方式: 共有177条查询结果,搜索用时 11 毫秒
21.
22.
23.
在可视化观察的基础上,实验研究了矩形通道高宽比对两相流动阻力和流型关系的影响。实验选择了3种通道尺寸的实验段,截面宽度相同,全部为43 mm,高度分别为1.41、3和10 mm,根据受限因子Co,前两个实验段属于窄通道,第3个属于常规通道。实验结果表明:高宽比不同时,随着气相流速的增加,通道内两相流动压降呈不同的变化趋势。对于10 mm通道,低气相流量时重位压降占主要成分,而对于1.41 mm和3 mm通道,摩擦压降占主要成分;随着气相流量的增大,总压降中摩擦压降的比例也增大;对于10 mm矩形通道,可利用压降变化规律确定搅混流的发生范围。 相似文献
24.
以空气和水为工质,应用高速摄像仪,对竖直窄矩形通道(3.25 mm×40 mm)内气液两相弹状流进行了可视化实验研究。气、液相表观速度分别为0.1~2.51 m/s和0.16~2.62 m/s,工作压力为常压。实验中发现窄矩形通道内弹状流与圆管中存在较大差别,气弹多发生变形,高液相流速时变形更为严重。窄边液膜含气量较高,在高液相流速时窄边液膜不下落,宽边液膜中含有由气弹头部进入和气弹尾部进入的气泡。气弹速度受气弹头部形状和宽度影响较大,受气弹长度影响较小。气弹速度可由Ishii & Jones-Zuber模型计算,但在低液相折算速度时偏差较大,其主要原因为漂移速度计算值较实验值偏小。 相似文献
25.
26.
以空气和水为工质,对竖直向上矩形通道(40 mm×1.41 mm,40 mm×10 mm)两相流流型特性进行了可视化研究。气液相表观速度分别为0.01~0.59 m/s和0.02~3.72 m/s。基于3个经典的泡状流向弹状流转变准则,考虑矩形通道的尺寸效应,导出了泡状流向弹状流转变时的临界空泡份额为0.23。以窄边宽度2.5 mm为界,将矩形通道分为小通道和常规通道两类,对泡状流向弹状流转变准则进行修正,修正准则能很好地预测实验值。为进一步验证修正准则的准确性和适用性,将修正准则与Mishima、Wilmarth和Sadatomi等的实验数据进行了对比,结果显示修正准则同样具有较好的预测效果。 相似文献
27.
较大管径中两相流动漂移流模型研究 总被引:2,自引:0,他引:2
漂移流模型作为一种简单实用的模型,在反应堆热工水力及安全分析,特别是在空泡份额的计算方面,应用非常广泛。针对不同的通道及流型,研究者提出了多种基于漂移流模型的计算方法。通过较大通道中两相流动过程的实验研究,对5种空泡份额计算模型进行评价分析。结果表明,基于常规通道的Hibiki-Ishii模型与实验值吻合较好,平均相对误差为14.1%。结合对气泡运动过程的研究,发现在〈Jg〉β<0.027区,分布参数C0<1,据此,给出了在较大管径通道中计算精度更高的模型关系式。 相似文献
28.
29.
设计制造一种以太阳能等低温热源驱动,并在负压下运行的两级管式淡化脱盐装置。在44及62℃恒温热源加热条件下,测试装置处于101、60及20 kPa运行压力时的水温及淡水产率,对其性能进行评估。结果表明负压运行可使蒸馏系统产水率提高到常压运行时的3倍以上,同时可提升装置对热能的利用效率。此外,数据表明真空辅助技术应用于小型淡化装置时,电能消耗较低,操作压力为60及20 kPa时,真空泵每小时耗电量分别约为0.00035及0.009 kWh。结合实验数据对2~5级管式蒸馏器的能量利用效率进行估算,当热源温度为70℃时,5级蒸馏器性能系数在60 kPa负压下可达3.79。 相似文献
30.