首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   9篇
  国内免费   3篇
综合类   10篇
化学工业   10篇
金属工艺   49篇
机械仪表   4篇
矿业工程   7篇
石油天然气   1篇
一般工业技术   28篇
冶金工业   49篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2012年   4篇
  2011年   9篇
  2010年   13篇
  2009年   12篇
  2008年   6篇
  2007年   12篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   10篇
  1999年   9篇
  1998年   8篇
  1993年   1篇
  1991年   1篇
  1989年   4篇
排序方式: 共有158条查询结果,搜索用时 640 毫秒
31.
方勋华  易茂中  左劲旅  张红波 《材料导报》2006,20(Z1):261-263,267
制备了一种具有自愈合功能的C/C复合材料抗氧化涂层,它主要由SiC和B4C、高熔点还原性氧化物等陶瓷细粉经简单工艺涂刷制成.通过动态氧气氛中的TGA试验、静态干燥空气中的氧化失重试验及扫描电镜、X射线衍射分析研究了其抗氧化和抗热震性能,试验结果显示,该涂层能承受1000℃以下40ml/min氧流量的动态氧化冲击;对应600~1000℃的静态氧化的平均氧化失重率介于10-8~10-6 g/(cm2·s)量级,涂层在1000℃以内的工作温度环境下具有良好的抗氧化能力;涂层试样经过10次热震循环后总的氧化失重为17.8%,在一定热循环范围内具有较好的抗热震性能;涂层试样的氧化失重率与氧化时间及热震次数具有非线性关系,表明该涂层具有自我愈合裂纹的功能.  相似文献   
32.
指尖密封用炭-炭复合材料摩擦磨损性能   总被引:2,自引:0,他引:2  
为确定指尖密封用炭-炭(炭纤维增强炭基体)复合材料的摩擦学性能,针对指尖密封的轻载使用条件,应用UMT-2摩擦磨损测试仪进行炭-炭复合材料摩擦磨损性能试验,测量摩擦系数与磨损率,并采用扫描电子显微镜(SEM)分析材料的摩擦磨损机理.结果表明,无纬布层垂直于摩擦平面时,材料的摩擦系数和磨损率较低.载荷增加,较高密度材料的磨损率增加缓慢,摩擦系数减小.与载荷相比,材料磨损率受频率的影响较小,且随频率升高摩擦磨损性能越好.磨损表面的SEM分析表明:低频、低载条件下材料发生磨粒磨损;频率的提高加快磨屑膜的成形,自润滑能力增强;载荷的增加虽使磨屑快速被挤压形成磨屑膜,但磨屑膜被不断挤出剥落,纤维裸露断裂产生严重磨损,这一点在材料密度较低时表现更为显著.选用较高密度的材料以及布置无纬布层垂直于摩擦平面可以有效缓解密封材料的磨损.  相似文献   
33.
对CVI(化学气相渗透)、RI(树脂浸渍)和CVI+RI 3种不同工艺制备的C/C复合材料进行了弯曲、剪切实验。结果表明:CVI和CVI+RI增密试样的弯曲、剪切强度均高于RI增密试样;用CVI和用CVI+RI制备的试样,其断裂过程均为典型的假塑性行为,而RI试样为典型的脆断行为。断口SEM观察表明:用CVI制备的试样断口呈锯齿状,有大量纤维从基体炭中拔出;而RI增密试样的断口平缓、光滑,仅有少量纤维拔出;在不同阶段增密的热解炭之间也呈现出阶梯状断裂形貌,并存在大小不一的裂纹,这表明在材料的断裂过程中,先用CVI增密试样不仅因纤维与基体炭之间的弱界面结合可提高材料的强度,也能因不同阶段增密工艺中产生的热解炭之间的环性裂缝影响微裂纹的走向,从而改变材料的脆断特征。  相似文献   
34.
以短切碳纤维(Cf)和碳化硅纤维(SiCf)为增强相,并用化学气相渗透法对部分纤维进行炭涂层处理,采用热压法制备了4种纤维增强MoSi2基复合材料(SiCf-MoSi2、SiCf/C-MoSi2、Cf-MoSi2和Cf/C-MoSi2),研究了纤维类型及表面炭涂层对MoSi2基复合材料弯曲性能的影响.结果表明纤维的加入明显提高了MoSi2的抗弯强度,加入5%SiCf和5%Cf的复合材料的强度比纯MoSi2分别提高了9.0%和22.8%,Cf增强作用明显优于SiCf;纤维类型相同时,具有炭涂层的纤维增强效果更显著,5%Cf/C-MoSi2复合材料的强度最高,达到了364.7MPa,比纯MoSi2的强度提高了30%;扫描电镜分析表明,无炭涂层的SiCf与MoSi2基体间存在着明显的裂缝,炭涂层改变了纤维与基体的界面结合;有涂层纤维的断裂机制为首先脱粘然后拔出.  相似文献   
35.
添加钛对炭/炭复合材料渗铜的影响   总被引:3,自引:4,他引:3  
通过铺展实验和渗透实验考查添加钛对铜与C/C复合材料润湿性能的影响。采用真空熔渗的方法成功地将铜合金液渗入到C/C复合材料坯体中。对渗铜后形成的C/C-Cu复合材料进行X射线衍射、金相和扫描电镜分析。结果表明,加入12%~16%(质量分数)的钛元素粉末使铜在C/C复合材料表面有好的铺展性能;含钛铜合金渗入到C/C复合材料中有TiC形成。添加钛元素能改善C/C复合材料渗铜性能的主要原因是改善铜在C/C复合材料中的化学吸附和物理吸附特性;通过毛细管力作用,合金液渗入到C/C复合材料坯体中。  相似文献   
36.
以聚丙烯腈( PAN) 基炭纤维(Cf ) 针刺整体毡为预制体, 用化学气相渗透(CVI) 法制备炭纤维增强炭基体(C/ C) 的多孔坯体, 采用熔融渗硅(MSI) 法制备C/ C-SiC 复合材料, 研究了渗剂中添加Al 对复合材料组织结构和力学性能的影响。结果表明: C/ C 坯体反应溶渗硅后复合材料的物相组成为SiC 相、C 相及残留Si 相。随着渗剂中Al 量的增加, 材料组成相中的Al 相也增加而其它相减少; SiC 主要分布在炭纤维周围, 残留Si 相分布在远离炭纤维处, 而此处几乎不含Al ; 当渗剂中Al 量由0 增加到10 %时, 复合材料的抗弯强度由116. 7 MPa 增加到175. 4 MPa , 提高了50. 3 % , 断裂韧性由5. 8 MPa·m1/2增加到8. 6 MPa·m1/2 , 提高了48. 2 %。Al 相的存在使复合材料基体出现韧性断裂的特征。   相似文献   
37.
航空刹车用C/C 复合材料坯体结构的研究   总被引:5,自引:0,他引:5  
为了探索降低航空刹车用C/C 复合材料成本、提高性能的有效方法, 对现役国外航空刹车用C/ C 复合材料的部分力学性能和热导率进行测试, 并利用金相显微镜对其坯体结构进行观察分析, 在此基础上, 自制了一种针刺整体毡, 进行CVD 增密, 并与炭布叠层坯体的结果对比。结果表明:国外航空刹车用C/C 材料的层间剪切强度和垂直方向热导率比较高, 坯体趋向于使用针刺毡;针刺整体毡由无纬布和网胎交替叠层, 经针刺而成, 这种结构具有孔隙分布均匀、气体扩散通道多、Z 向纤维含量高的特点, 为CVD增密创造了良好条件;自制针刺整体毡坯体经700 h CVD 增密, 小样密度可达1.81 g/cm3, 大样密度达1.75 g/ cm3, 且能继续增密, 与炭布叠层坯体相比, 采用针刺整体毡可显著缩短CVD 周期。  相似文献   
38.
将不同质量分数的钛粉加入Ni-14Cr-10P合金粉末中,再配合高分子聚合物制得膏状Ni-14Cr-10P-x Ti活性钎料,用制得的焊膏钎焊C/C复合材料,然后测试了钎焊接头的剪切强度,通过扫描电子显微镜、能谱分析仪、电子探针显微分析仪等对钎焊接头界面组织特征进行分析。结果表明:活性元素Cr、Ti与C/C复合材料表面的C反应而起到表面改性的作用,使得钎料能在C/C复合材料表面润湿、填缝。随着Ti元素加入量的增加,钎焊接头剪切强度先增加再降低。Ti质量分数为1%时,TiC呈颗粒状弥散分布,使得钎料层强化,接头剪切强度增加;当Ti增加到3%时,在界面处形成了连续的Cr_3C_2/TiC脆性材料层,接头剪切强度下降;Ti质量分数达到5%时,Ti与Cr_3C_2反应使得梯度界面层消失,界面物质热膨胀系数差异增大,残余热应力增加,同时Ti与Ni、Cr形成的金属间化合物增加并集中分布在钎料层中,导致接头剪切强度急剧下降。  相似文献   
39.
用涂层压入仪界面压入测定结合强度的实验研究   总被引:4,自引:0,他引:4  
用可实行单点连续加载卸载的涂层压入仪,测定热喷涂涂层与基体之间界面开裂的临界载荷PW,此值可反映结合强度,与现有的压入法比较,用涂层压入仪只需一次压入就可测定P一次压入就可此方法比粘结拉伸简捷、适合评价高结合强度的涂层。  相似文献   
40.
将T700或Nicalon-SiC短纤维、碳粉、硅粉和少量碳化硅粉混合,在1900℃热压烧结制备短纤维增强C-SiC复合材料,并对其组织、结构及性能进行了研究。结果表明:SiCf/C-SiC的相对密度和室温强度分别为95.3%和24.38MPa,均高于Cf/C-SiC的相对密度和室温强度,热压烧结过程中Cf的损伤严重。短纤雄增强C-SiC复合材料中,由于C相和SiC相的同时存在,在同一温度下的氧化行为表现为在氧化初期氧化质量损失率较大,C相的氧化起主要作用;随氧化时间的增长,氧化质量损失率逐渐减小;在氧化后期则质量增加,SiC相的惰性氧化起主要作用。SiCf/C-SiC复合材料的抗氧化性能优于Cf/C-SiC复合材料的抗氧化性能。SiCf/C-SiC复合材料在温度为1100℃~1400℃时,温度越高,氧化质量损失率越小,抗氧化性能越强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号