全文获取类型
收费全文 | 60篇 |
免费 | 56篇 |
国内免费 | 3篇 |
专业分类
电工技术 | 10篇 |
综合类 | 1篇 |
化学工业 | 72篇 |
机械仪表 | 4篇 |
矿业工程 | 4篇 |
能源动力 | 21篇 |
一般工业技术 | 2篇 |
冶金工业 | 3篇 |
原子能技术 | 1篇 |
自动化技术 | 1篇 |
出版年
2024年 | 9篇 |
2023年 | 3篇 |
2022年 | 9篇 |
2021年 | 6篇 |
2020年 | 11篇 |
2019年 | 6篇 |
2018年 | 1篇 |
2017年 | 5篇 |
2016年 | 1篇 |
2015年 | 5篇 |
2014年 | 9篇 |
2013年 | 7篇 |
2012年 | 8篇 |
2011年 | 6篇 |
2010年 | 6篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 1篇 |
1951年 | 2篇 |
排序方式: 共有119条查询结果,搜索用时 15 毫秒
81.
微生物燃料电池是一种处理废水同时产生电能的新型装置,阳极作为微生物燃料电池的重要组件极大地影响电池性能。针对微生物燃料电池传统三维电极结构不合理导致电极内部物质传输受限,电池功率密度较低的问题,本文采用3D打印技术并碳化的方式构建了结构可控的微生物燃料电池阳极,通过热重分析得到合适的碳化条件,并通过进一步的电化学分析和电极微观形貌拍摄研究了电极内部孔道结构对微生物生长情况和电池性能的影响。实验结果表明:电极孔径尺寸为0.4mm时,电池具有最优性能,其最大功率密度达12.85W/m2,比采用碳布阳极的MFC提升10倍,较采用碳毡阳极的燃料电池高38%;具有可控孔道结构电极的传荷阻抗和传质阻抗是限制电极性能的主要因素,通过优化孔道尺寸和结构分布可降低其传荷及传质阻抗,可以进一步提升电池性能。 相似文献
82.
基于棉线的微流体燃料电池采用棉线作为流道,无须外部泵、易于微型化,是便携式微流体设备非常有前景的电源,但其性能受阳极燃料传质的限制。本文采用格子Boltzmann方法研究基于棉线的微流体燃料电池阳极耦合电化学反应的传质特性,通过构建三维的棉线流道数值模型,计算得到该流道内燃料的速度及浓度分布,并讨论燃料的进口浓度及流量对该电池阳极性能及传质特性的影响。计算结果表明:阳极极化曲线与实验结果吻合较好;燃料在棉线内部的流速较低,在不同阳极过电位下,燃料浓度沿流动方向均降低,且过电位越大降低得越多;进口燃料浓度越高时,平均电流密度越高,阳极性能升高;随着进口燃料流量的增加,棉线与反应界面接触部位的浓度与其他区域浓度之间的差异增大,而进口流量较低时,该浓度的差异较小且流道后段的浓度较低。 相似文献
83.
结合改进的模板法和ZnO水热生长法在环氧树脂基底上得到了荷叶仿生超疏水结构,该方法工艺流程简单、制作成本低廉,可以实现微观结构的快速复刻。研究了模板法对天然表面复刻的适用范围,其对荷叶和水稻等具有突起类微观结构表面的复刻效果良好,并研究了水热法中ZnO生长液浓度对纳米结构的影响。同时为了研究不同微观结构对表面疏水性能的影响,制作了光滑表面、纳米结构表面和仿荷叶微米结构表面,并测试了表面的疏水性能。结果表明,粗糙结构能够提高低能表面的疏水性能,微纳复合结构更有利于表面形成超疏水;增加表面的粗糙结构能够增加液滴与固体接触面上的气-液占比,进而使得液滴在表面的接触角增加。 相似文献
84.
微藻具有生长周期短、光合固碳效率高等优势,并且含有丰富的糖类、蛋白质和油脂等含碳化合物,是极具能源化和资源化利用潜力的可再生生物质资源。超临界水气化技术能够在不需要干燥微藻的条件下直接将高含水微藻转化为富氢合成气,可节约大量微藻脱水能耗,并且具有反应速率高、转化效率高等优势,近年来受到了国内外研究者的广泛关注。基于此,本文综述了近年来微藻超临界水气化制氢的研究进展,重点讨论了微藻超临界水气化反应的主要影响因素,包括反应温度、压力、停留时间、物料浓度和反应器类型,阐释了不同催化剂对微藻超临界水气化过程的影响和作用机理。并探讨了微藻主要三组分模型化合物在超临界水气化过程的反应机理,总结了微藻超临界水气化过程的动力学和热力学特性。最后展望了微藻超临界水气化制取富氢合成气技术的未来研究方向,为微藻超临界水气化制氢技术的研究与应用提供理论指导。 相似文献
85.
金属有机骨架材料Mg-MOF-74因不饱和金属位的存在具有低压下较高的CO_2吸附量,且具有化学表面可修饰、可调控孔径等特点。基于密度泛函理论和巨正则蒙特卡罗方法对Mg-MOF-74进行官能团Br改性,发现Br改性使得苯环附近产生更强的静电势梯度,增强了骨架原子和极性CO_2分子间的相互作用,利于CO_2在骨架孔道内的吸附。但Br的引入带来了骨架自身比表面积、孔体积的下降,不利于在高压区CO_2吸附。φ(CO_2)∶φ(N2)=15∶85条件下,Br改性使得骨架对混合气体中CO_2分离比相比改性前提高了近64%。在含湿条件下(φ(CO_2)∶φ(N2)∶φ(H2O)=15∶84∶1),Br改性使得H2O质量吸附量大大下降,低压下的分离比得到提高。 相似文献
87.
88.
89.
90.