A tunable, passively Q-switched thulium doped fluoride fibre (TDFF) laser using a reduced-graphene oxide-silver (rGO-Ag) thin film as a saturable absorber (SA) for S band operation is proposed and its efficacy demonstrated. Over a pump power range of 91.4?mW up to 158.6?mW, passively generated Q-switched pulses are observed with repetition rates from 20 to 34.5?kHz and pulse widths from 3.1 to 7.1?µs. The highest pulse energy observed is 101.2?nJ with a signal to noise ratio of ~42?dB. The proposed laser has a tuning range ~52?nm from 1458 to 1510?nm with a tunable bandpass filter (TBPF) introduced into the cavity. 相似文献
In this article, we develop proportional, fractional-integral, and derivative () controllers for the regulation and tracking problems of nonlinear systems. The analytic results are obtained by extending the passivity-based approach to include fractional operators. Robustness under parametric uncertainty is dealt with by a combination with an adaptive scheme. It is also shown their robustness under additive noise and their robustness under uncertainty in the derivation order. The advantages in the controlled system performance and in the control energy consumption in comparison to classic PI and proportional integral derivative controllers are illustrated for the quadratic boost converter and a benchmark system in the literature. 相似文献
The effects of Sr2+ substitution for Ba2+ on microwave dielectric properties and crystal structure of Ba3-xSrx(VO4)2 (0 ≤ x ≤ 3, BSVO) solid solution were investigated. Such Sr2+ substitution contributes to significant reduction in sintering temperature from 1400 °C to 1150 °C. Both permittivity (∑r) and quality factor (Q × f) values decreased with increasing x value, which was determined to be related with the descending values of average polarizability and packing fraction, whereas the increase in τf value was explained by the decreased average VO bond length, A-site bond valence. BSVO ceramics possessed encouraging dielectric performances with ∑r = 12.2–15.6 ± 0.1, Q × f = 44,340 - 62,000 ± 800 GHz, and τf = 24.5–64.5 ± 0.2 ppm/°C. Low-temperature sintering was manipulated by adding B2O3 as sintering additive for the representative Sr3V2O8 (SVO) ceramic and only 1 wt.% B2O3 addition successfully contributed to a 21.7% decrease in sintering temperature to 900 °C, showing good chemical compatibility with silver electrodes, which render BSVO series and SVO ceramics potential candidates in multilayer electronic devices fabrication. 相似文献
q-Rung orthopair fuzzy sets (q-ROFSs), originally presented by Yager, are a powerful fuzzy information representation model, which generalize the classical intuitionistic fuzzy sets and Pythagorean fuzzy sets and provide more freedom and choice for decision makers (DMs) by allowing the sum of the power of the membership and the power of the nonmembership to be less than or equal to 1. In this paper, a new class of fuzzy sets called q-rung orthopair uncertain linguistic sets (q-ROULSs) based on the q-ROFSs and uncertain linguistic variables (ULVs) is proposed, and this can describe the qualitative assessment of DMs and provide them more freedom in reflecting their belief about allowable membership grades. On the basis of the proposed operational rules and comparison method of q-ROULSs, several q-rung orthopair uncertain linguistic aggregation operators are developed, including the q-rung orthopair uncertain linguistic weighted arithmetic average operator, the q-rung orthopair uncertain linguistic ordered weighted average operator, the q-rung orthopair uncertain linguistic hybrid weighted average operator, the q-rung orthopair uncertain linguistic weighted geometric average operator, the q-rung orthopair uncertain linguistic ordered weighted geometric operator, and the q-rung orthopair uncertain linguistic hybrid weighted geometric operator. Then, some desirable properties and special cases of these new operators are also investigated and studied, in particular, some existing intuitionistic fuzzy aggregation operators and Pythagorean fuzzy aggregation operators are proved to be special cases of these new operators. Furthermore, based on these proposed operators, we develop an approach to solve the multiple attribute group decision making problems, in which the evaluation information is expressed as q-rung orthopair ULVs. Finally, we provide several examples to illustrate the specific decision-making steps and explain the validity and feasibility of two methods by comparing with other methods. 相似文献
ABSTRACTIn view of the complexity of current detection efficiency calibration of radioactive gas sources, a method using solid planar sources to be equivalent to gas sources was studied. For the 50 mL gas source box, an optimal equivalent scheme was selected by Monte Carlo Simulations. Then, the full-energy-peak efficiency curve of gas sources at the measurement position of 25 cm, with source-to-detector distance of 25 cm, was fitted by measuring solid planar sources with known activity. To verify the accuracy of the efficiency curve, 41Ar, 133Xe and 87Kr gases were produced and determined by length-compensated method. Then, their full-energy-peak efficiencies at 25 cm position away from the detector were directly calibrated. The percentage efficiency deviations between interpolation from the efficiency curve and direct calibration are all less than 2.5%, which proves the accuracy of the equivalent method. This calibration method is a general one and can be also used for some other radioactive sample measurements, such as non-destructive analysis of gaseous fission product samples with a suitable source-to-detector distance. 相似文献
During approximate 773 K aging treatment of 100Mn13 steel, degenerate pearlite will occur and evolve into lamellar pearlite during growth process. The microstructures of degenerate pearlite and its evolutionary lamellar pearlite are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that after 748 K, 773 K and 798 K aging, degenerate pearlites occur at grain boundary. At growth front of degenerate pearlite forming at 773 K and 798 K, pearlite presents a morphology of short lamellae of carbide and ferrite, indicating a trend of developing into lamellar pearlite. The higher the temperature is, the more obvious the trend is, and even a conventional lamellar pearlite has developed. However, there is no morphological evolution for degenerate pearlite forming at 748 K aging. Besides, the constituents of degenerate pearlite is identified as M23C6 and ferrite, and Kurdjumov-Sachs orientation relationship exists between them, (01 )α//( 1 )M23C6, [111]α//[110]M23C6. This orientation relationship maintains in morphological evolution from degenerate pearlite to lamellar pearlite. 相似文献
Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.
ABSTRACT Here, a novel cryogenic rolling plus intercritical annealing process was applied to a transformation-induced plasticity (TRIP) steel with a low chemical composition of carbon and manganese. Compared with traditional cold rolling, obvious grain refinement was observed, due to a high amount of dislocations retained. In addition, austenite volume fraction was increased, because of a unique nucleation mechanism. Subjected to cryogenic rolling, strength and ductility were increased, due to the enhanced austenite stability, which provided continuous and active TRIP effect. Consequently, tensile strength was increased to 1030?MPa, and elongation was increased to 38.2%. Thus, a great mechanical combination was obtained in a steel with a relatively low chemical composition with carbon and manganese, only by cryogenic rolling process. 相似文献
AbstractIn the present work, we compare the structure and transport properties of carbon nanohorns (CNHs) synthesized by arc evaporation of graphite alone and with the addition of some portion of toluene. The materials have been investigated using transmission electron microscopy, Raman and infrared spectroscopies, thermogravimetric and BET analyses. The addition of a small amount of toluene during the evaporation of graphitic rod increases the length of CNHs, affects their hierarchical arrangement in aggregates and results in surface functionalization. All these features significantly enhance the conductivity of CNHs obtained with toluene additive in comparison with the pristine CNHs. 相似文献