首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2162篇
  免费   0篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   18篇
金属工艺   1篇
机械仪表   38篇
建筑科学   5篇
矿业工程   3篇
能源动力   1篇
轻工业   43篇
水利工程   5篇
无线电   7篇
一般工业技术   8篇
冶金工业   2021篇
自动化技术   9篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   15篇
  1999年   75篇
  1998年   608篇
  1997年   355篇
  1996年   225篇
  1995年   139篇
  1994年   100篇
  1993年   119篇
  1992年   15篇
  1991年   18篇
  1990年   16篇
  1989年   18篇
  1988年   23篇
  1987年   13篇
  1986年   17篇
  1985年   17篇
  1984年   1篇
  1983年   9篇
  1982年   7篇
  1981年   19篇
  1980年   28篇
  1978年   6篇
  1977年   66篇
  1976年   161篇
  1975年   3篇
  1973年   1篇
  1964年   1篇
  1955年   3篇
排序方式: 共有2163条查询结果,搜索用时 15 毫秒
71.
72.
73.
Our knowledge of the traits possessed by extraintestinal isolates of Escherichia coli, necessary for growth and survival in urine, is limited. To identify such determinants, transposon (TnphoA'1,4) mutant libraries of a clinical isolate (CP9) were generated and screened for derivatives exhibiting decreased growth in urine in vitro, and for mutants with active lacZ fusions that were induced in urine relative to laboratory medium. Using this approach we identified two genes, guaA (CPA24) and argC (CPI-1), which were previously unrecognized as being important for growth in human urine. Unexpectedly, not only does CPA24 (guaA) not grow in human urine in vitro, but it is sensitive to its effects, undergoing a 2-3 log loss of viability over 6 h. By contrast, CPA24 neither grows nor is killed in M9 minimal medium and artificial urine. Therefore, we postulate that lack of guanine or its derivatives in urine, and the inability of CPA24 to synthesize these compounds de novo, prevents CPA24 from synthesizing other guanine (or derivatives)-dependent products that are critical for growth and survival in urine. Although it seems logical that decreased growth in urine in vitro should correlate with diminished urovirulence, this concept was tested by challenging mice with CPA24 in vivo in a mouse model of urinary tract infection (UTI). Indeed, CPA24 was found to be significantly less virulent compared with its wild-type parent CP9. CPI-1(argC) was identified because of the significant induction of its argC::lacZ fusion in urine. Subsequent testing in urine demonstrated that its growth was significantly diminished in all urine samples tested (four females, three males). Polyamine synthesis is dependent upon, in part, the arginine biosynthetic pathway. Therefore, we tested whether the induction of argC in urine and/or the decreased growth of CPI-1 was a result of low levels of polyamines or arginine in urine. The results suggest that low levels of arginine, but not polyamines, in human urine are responsible. When tested in vivo in the mouse model of UTI, CPI-1 was also found to be significantly less virulent than CP9. In summary, we have established that guaA and argC are the first genes, which we are aware of, that have been shown to contribute to the growth of E. coli in urine in vitro and both have diminished urovirulence in vivo. These results support the concept that urine can be used in vitro as a screening tool to identify urovirulence traits.  相似文献   
74.
75.
76.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2alpha (eIF2alpha). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2alpha, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and lambda repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   
77.
78.
79.
Differential, functional loading of the mandibular condyles has been suggested by several human morphologic studies and by animal strain experiments. To describe articular loading and the simultaneous forces on the dental arch, static bites on a three-dimensional finite element model of the human mandible were simulated. Five clenching tasks were modeled: in the intercuspal position; during left lateral group effort; during left lateral group effort with balancing contact; during incisal clenching; and during right molar clenching. The model's predictions confirmed that the human mandibular condyles are load-bearing, with greater force magnitudes being transmitted bilaterally during intercuspal and incisal clenching, as well as through the balancing-side articulation during unilateral biting. Differential condylar loading depended on the clenching task. Whereas higher forces were found on the lateral and lateroposterior regions of the condyles during intercuspal clenching, the model predicted higher loads on the medial condylar regions during incisal clenching. The inclusion of a balancing-side occlusal contact seemed to decrease the forces on the balancing-side condyle. Whereas the predicted occlusal reaction forces confirmed the lever action of the mandible, the simulated force gradients along the tooth row suggest a complex bending behavior of the jaw.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号