首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42836篇
  免费   903篇
  国内免费   178篇
电工技术   527篇
综合类   630篇
化学工业   4524篇
金属工艺   581篇
机械仪表   857篇
建筑科学   826篇
矿业工程   391篇
能源动力   405篇
轻工业   2062篇
水利工程   610篇
石油天然气   48篇
武器工业   4篇
无线电   1812篇
一般工业技术   3364篇
冶金工业   21530篇
原子能技术   188篇
自动化技术   5558篇
  2024年   56篇
  2023年   188篇
  2022年   115篇
  2021年   104篇
  2018年   450篇
  2017年   671篇
  2016年   1049篇
  2015年   774篇
  2014年   418篇
  2013年   411篇
  2012年   2125篇
  2011年   2419篇
  2010年   662篇
  2009年   750篇
  2008年   597篇
  2007年   617篇
  2006年   557篇
  2005年   3334篇
  2004年   2557篇
  2003年   2042篇
  2002年   839篇
  2001年   729篇
  2000年   271篇
  1999年   619篇
  1998年   6182篇
  1997年   3819篇
  1996年   2508篇
  1995年   1457篇
  1994年   1080篇
  1993年   1101篇
  1992年   248篇
  1991年   306篇
  1990年   305篇
  1989年   277篇
  1988年   296篇
  1987年   222篇
  1986年   205篇
  1985年   176篇
  1984年   73篇
  1983年   80篇
  1982年   129篇
  1981年   177篇
  1980年   193篇
  1979年   60篇
  1978年   99篇
  1977年   613篇
  1976年   1331篇
  1975年   98篇
  1973年   47篇
  1971年   50篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
871.
钟靖龙  宋宝    刘永兴  徐必业 《微电机》2022,(5):40-44+61
针对柔性伺服系统的多频谐振抑制问题,提出一种基于DDPG的级联陷波器参数整定方法。以系统速度环开环bode图及陷波器bode图预处理结果作为训练数据,并以相位裕度作为奖励函数训练神经网络,实现所设计的伺服系统级联陷波器深度及宽度参数优化训练。搭建了三质量柔性伺服系统实验平台,并开展了多频谐振抑制实验,实验结果表明所提出的参数选择方法能够 找到具有最大相位裕度的陷波器参数,并有效地抑制系统多频谐振。  相似文献   
872.
Temperature change, as a common kind of internal perturbation performed on granular materials, has a significant effect on the bulk properties of granular materials. However, few studies on thermally-induced shakedown under a long-term thermal cycling were reported. In this work, the discrete element method was used to give insight into the thermally-induced shakedown on the fabric and stress states within non-cohesive, frictional granular assemblies. Assemblies were submitted to thermal cycling at a stationary boundary condition after experiencing a one-dimensional compression. Evolution of coordination number, entropy and anisotropy was investigated as well as boundary forces and contact forces. At the same time, effects of the heating rate, the initial vertical load and the magnitude of temperature change were examined. It demonstrates that thermal cycling induces a significant force relaxation within granular materials, while the corresponding granular fabric has a small change. In addition, the entropy and anisotropy decreases with thermal cycling. Moreover, the initial vertical load can constrain the development of thermally-induced fabric change, thereby limiting force relaxation to some degree. Both high heating rate and larger magnitudes of temperature change contribute to more significant force relaxation. However, they cause smaller fabric changes even though they provide larger perturbations.  相似文献   
873.
The continuous-time random walk (CTRW) model is useful for alleviating the computational burden of simulating diffusion in actual media. In principle, isotropic CTRW only requires knowledge of the step-size, \(P_l\), and waiting-time, \(P_t\), distributions of the random walk in the medium and it then generates presumably equivalent walks in free space, which are much faster. Here we test the usefulness of CTRW to modelling diffusion of finite-size particles in porous medium generated by loose granular packs. This is done by first simulating the diffusion process in a model porous medium of mean coordination number, which corresponds to marginal rigidity (the loosest possible structure), computing the resulting distributions \(P_l\) and \(P_t\) as functions of the particle size, and then using these as input for a free space CTRW. The CTRW walks are then compared to the ones simulated in the actual media. In particular, we study the normal-to-anomalous transition of the diffusion as a function of increasing particle size. We find that, given the same \(P_l\) and \(P_t\) for the simulation and the CTRW, the latter predicts incorrectly the size at which the transition occurs. We show that the discrepancy is related to the dependence of the effective connectivity of the porous media on the diffusing particle size, which is not captured simply by these distributions. We propose a correcting modification to the CTRW model—adding anisotropy—and show that it yields good agreement with the simulated diffusion process. We also present a method to obtain \(P_l\) and \(P_t\) directly from the porous sample, without having to simulate an actual diffusion process. This extends the use of CTRW, with all its advantages, to modelling diffusion processes of finite-size particles in such confined geometries.  相似文献   
874.
Soft-grain materials such as clays and other colloidal pastes share the common feature of being composed of grains that can undergo large deformations without rupture. For the simulation of such materials, we present two alternative methods: (1) an implicit formulation of the material point method (MPM), in which each grain is discretized as a collection of material points, and (2) the bonded particle model (BPM), in which each soft grain is modeled as an aggregate of rigid particles using the contact dynamics method. In the MPM, a linear elastic behavior is used for the grains. In order to allow the aggregates in the BPM to deform without breaking, we use long-range center-to-center attraction forces between the primary particles belonging to each grain together with steric repulsion at their contact points. We show that these interactions lead to a plastic behavior of the grains. Using both methods, we analyze the uniaxial compaction of 2D soft granular packings. This process is nonlinear and involves both grain rearrangements and large deformations. High packing fractions beyond the jamming state are reached as a result of grain shape change for both methods. We discuss the stress-strain and volume change behavior as well as the evolution of the connectivity of the grains. Similar textures are observed at large deformations although the BPM requires higher stress than the MPM to reach the same level of packing fraction.  相似文献   
875.
An analytical solution for simply supported layered plates with viscoelastic interlayers under a transverse load is proposed. The deformation of each plate layer is described by the exact three-dimensional elasticity equations. The viscoelastic property of interlayer is simulated by the generalized Maxwell model. The constitutive relation of the interlayer is simplified by the quasi-elastic approximation, which significantly simplifies the analytical process. The solution of stress and displacement fields with undetermined coefficients is derived by solving a group of ordinary differential equations. The undetermined coefficients can be efficiently deduced by using the recursive matrix technique for the plate with any number of layers. The practical convergence is observed during numerical tests. The comparison analysis indicates that the present solution has a close agreement with the finite element solution. However, the solution based on the Mindlin–Reissner hypothesis is significantly different from the present solution for thick plates. Finally, the effect of interlayer thickness on stress and displacement distributions of a five-layer plate is discussed in detail.  相似文献   
876.
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable \(S\) is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses \(\sigma_{ii}^{R}\) and the rotation tensor \(M\), the Jacobian matrix in the global coordinate system \(J_{ijkl}\) was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.  相似文献   
877.
Copper–graphite composite materials in the range of 0–10 vol% of carbon phase were prepared from the mixture of copper and graphite powders by hot isostatic pressing. The microstructure, mechanical (tensile strength, elongation to fracture) and physical (electrical and thermal conductivity) properties of composite samples were investigated, and the cross-property connections were calculated. It was shown that electrical and thermal conductivity cross-property (Lorenz number) is almost constant and increases only slightly (no more than 10 % increase was observed). This implies that in the investigated composition range the Lorenz number of a copper–graphite composite system behaves according to Franz–Wiedemann law for pure metals at constant temperature. On the contrary, the conductivity to tensile strength cross-property connections showed significant linear increase (over 200 % in the investigated composition range) for both electrical conductivity and thermal conductivity of composite materials. The cross-property connections of conductivity to the elongation to fracture exhibit a nonlinear dependence on the volume fraction of graphite.  相似文献   
878.
This work describes a modeling study of methane pyrolysis in chemical vapor deposition (CVD). The model consists of a detailed chemical kinetic model, which includes 241 species and 909 gas-phase reactions for methane pyrolysis mechanism, and a plug-flow model, which describes the transport conditions in CVD. Reasonably good agreements were obtained between the simulation results and the experimental results of methane pyrolysis in CVD of pyrocarbon in a vertical hot-wall deposition reactor without any artificial adjustments. The mole fractions of hydrogen, acetylene, ethylene, and benzene increased with a decreasing growth rate as the residence time and the initial methane pressure increased. Sensitivity analysis and reaction paths were conducted to identify the crucial reaction steps and explain how they impact in this pyrolysis process. Results showed that methane pyrolysis had an incubation stage to form a necessary gas atmosphere for the pyrolysis to move forward and C3 species were the main direct source for benzene formation. These results should be useful to understand methane pyrolysis at a molecular level in CVD, as well as the relationship between the gas species and the pyrocarbon.  相似文献   
879.
The microstructure of a graphene-reinforced tennis racquet has been analysed using a combination of optical microscopy and Raman spectroscopy. It is shown that the main structural components in the racquet frame are high-strength carbon fibres in an epoxy resin matrix. It is also found that graphene-based nanoparticles are used to reinforce resin-rich regions in the shaft of the racquet at the discontinuity in the fibre tows, where the handle is joined to the racquet head. From a detailed analysis of the relative positions and intensities of the Raman G and 2D bands, it is demonstrated that the nanoparticles employed in the racquet are most probably graphite nanoplatelets which have been added to improve the mechanical properties of the resin-rich regions. The nomenclature used for describing graphene-based materials is also discussed in the context of this present study.  相似文献   
880.
CeO2 and Co3O4–CeO2 nanoparticles were synthesized, thoroughly characterized, and evaluated in the COPrOx reaction. The CeO2 nanoparticles were synthesized by the diffusion-controlled precipitation method with ethylene glycol. A notably higher yield was obtained when H2O2 was used in the synthesis procedure. For comparison, two commercial samples of CeO2 nanoparticles (Nyacol®)—one calcined and the other sintered—were also studied. Catalytic results of bare CeO2 calcined at 500 °C showed a strong influence of the method of synthesis. Despite having similar BET area values, the CeO2 synthesized without H2O2 was the most active sample. Co3O4–CeO2 catalysts with three different Co/(Co + Ce) atomic ratios, 0.1, 0.3, and 0.5, were prepared by the wet impregnation of the CeO2 nanoparticles. TEM and STEM observations showed that impregnation produced mixed oxides composed of small CeO2 nanoparticles located both over the surface and inside the Co3O4 crystals. The mixed oxide catalysts prepared with a cobalt atomic ratio of 0.5 showed methane formation, which started at 200 °C due to the reaction between CO2 and H2. However, above 250 °C, the reaction between CO and H2 became important, thus contributing to CO elimination with a small H2 loss. As a result, CO could be totally eliminated in a wide temperature range, from 200 to 400 °C. The methanation reaction was favored by the reduction of the cobalt oxide, as suggested by the TPR experiments. This result is probably originated in Ce–Co interactions, related to the method of synthesis and the surface area of the mixed oxides obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号