首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9050篇
  免费   552篇
  国内免费   21篇
电工技术   125篇
综合类   18篇
化学工业   2339篇
金属工艺   170篇
机械仪表   207篇
建筑科学   321篇
矿业工程   36篇
能源动力   223篇
轻工业   402篇
水利工程   68篇
石油天然气   28篇
无线电   758篇
一般工业技术   2286篇
冶金工业   981篇
原子能技术   78篇
自动化技术   1583篇
  2023年   153篇
  2022年   374篇
  2021年   418篇
  2020年   285篇
  2019年   246篇
  2018年   301篇
  2017年   255篇
  2016年   349篇
  2015年   297篇
  2014年   438篇
  2013年   550篇
  2012年   547篇
  2011年   623篇
  2010年   423篇
  2009年   412篇
  2008年   433篇
  2007年   416篇
  2006年   324篇
  2005年   252篇
  2004年   222篇
  2003年   201篇
  2002年   191篇
  2001年   122篇
  2000年   113篇
  1999年   119篇
  1998年   193篇
  1997年   154篇
  1996年   105篇
  1995年   83篇
  1994年   73篇
  1993年   90篇
  1992年   53篇
  1991年   50篇
  1990年   50篇
  1989年   37篇
  1988年   44篇
  1987年   40篇
  1986年   34篇
  1985年   42篇
  1984年   37篇
  1983年   32篇
  1982年   27篇
  1981年   27篇
  1980年   23篇
  1979年   19篇
  1978年   28篇
  1977年   24篇
  1976年   60篇
  1975年   27篇
  1971年   17篇
排序方式: 共有9623条查询结果,搜索用时 15 毫秒
131.
132.
Emerging soft ionotronics better match the human body mechanically and electrically compared to conventional rigid electronics. They hold great potential for human-machine interfaces, wearable and implantable devices, and soft machines. Among various ionotronic devices, ionic junctions play critical roles in rectifying currents as electrical p–n junctions. Existing ionic junctions, however, are limited in electrical and mechanical performance, and are difficult to fabricate and degrade. Herein, the design, fabrication, and characterization of tough transient ionic junctions fabricated via 3D ionic microgel printing is reported. The 3D printing method demonstrates excellent printability and allows one to fabricate ionic junctions of various configurations with high fidelity. By combining ionic microgels, degradable networks, and highly charged biopolymers, the ionic junctions feature high stretchability (stretch limit 27), high fracture energy (>1000 Jm−2), excellent electrical performance (current rectification ratio >100), and transient stability (degrade in 1 week). A variety of ionotronic devices, including ionic diodes, ionic bipolar junction transistors, ionic full-wave rectifiers, and ionic touchpads are further demonstrated. This study merges ionotronics, 3D printing, and degradable hydrogels, and will motivate the future development of high-performance transient ionotronics.  相似文献   
133.
The electrochemical CO2 reduction reaction (CO2RR) to value-added chemicals with renewable electricity is a promising method to decarbonize parts of the chemical industry. Recently, single metal atoms in nitrogen-doped carbon (MNC) have emerged as potential electrocatalysts for CO2RR to CO with high activity and faradaic efficiency, although the reaction limitation for CO2RR to CO is unclear. To understand the comparison of intrinsic activity of different MNCs, two catalysts are synthesized through a decoupled two-step synthesis approach of high temperature pyrolysis and low temperature metalation (Fe or Ni). The highly meso-porous structure results in the highest reported electrochemical active site utilization based on in situ nitrite stripping; up to 59±6% for NiNC. Ex situ X-ray absorption spectroscopy (XAS) confirms the penta-coordinated nature of the active sites. The catalysts are amongst the most active in the literature for CO2 reduction to CO. The density functional theory calculations (DFT) show that their binding to the reaction intermediates approximates to that of Au surfaces. However, it is found that the turnover frequencies (TOFs) of the most active catalysts for CO evolution converge, suggesting a fundamental ceiling to the catalytic rates.  相似文献   
134.
Medium Access Control (MAC) protocols for Wireless Sensor Networks (WSN) are usually designed as random access protocols that apply different kinds of backoff strategies since Time Division Multiple Access (TDMA) based protocols with admission control are very complex and require additional mechanisms for synchronization. Without such mechanisms, fair or priority based medium access with Quality of Service (QoS) guarantees can hardly be achieved by existing protocols. Therefore, we developed a random access protocol which uses a new preamble-based medium access strategy that enables collision-free priority based access without the need of synchronization. In this paper we introduce different QoS strategies and their use cases. All strategies can be easily integrated in our protocol to meet the requirements of different target applications. Furthermore, we compare the performance of the strategies with a typical carrier-sense based protocol.  相似文献   
135.
Vehicular Communication Networks (VCNs) are used to supply a communication platform for Intelligent Transportation Systems services also for value added services in different road systems. In comparison to other communication networks, VCNs come with major challenges: high mobility and velocity of vehicles that cause rapidly change topology of network and fast change of vehicle’s locations. Location information services (LISs) or location management systems (LMSs) are used to provide location information about vehicles such as current location, speed, direction and report this information to other vehicles or network entities that require this information. We present a survey for LISs in VCNs and introduce 11 approaches in literature. Moreover, we present a classification for LISs and compare mentioned approaches based on our classification. Finally we evaluate studied LISs by some performance properties to measure their overall efficiency.  相似文献   
136.
Here, a new, fast, and versatile method for the incorporation of colloidal quantum dots (QDs) into ionic matrices enabled by liquid–liquid diffusion is demonstrated. QDs bear a huge potential for numerous applications thanks to their unique chemical and physical properties. However, stability and processability are essential for their successful use in these applications. Incorporating QDs into a tight and chemically robust ionic matrix is one possible approach to increase both their stability and processability. With the proposed liquid–liquid diffusion‐assisted crystallization (LLDC), substantially accelerated ionic crystallization of the QDs is shown, reducing the crystallization time needed by one order of magnitude. This fast process allows to incorporate even the less stable colloids including initially oil‐based ligand‐exchanged QDs into salt matrices. Furthermore, in a modified two‐step approach, the seed‐mediated LLDC provides the ability to incorporate oil‐based QDs directly into ionic matrices without a prior phase transfer. Finally, making use of their processability, a proof‐of‐concept white light emitting diode with LLDC‐based mixed QD‐salt films as an excellent color‐conversion layer is demonstrated. These findings suggest that the LLDC offers a robust, adaptable, and rapid technique for obtaining high quality QD‐salts.  相似文献   
137.
138.
Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium‐ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte‐mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.  相似文献   
139.
Organic–inorganic hybrid materials are of significant interest owing to their diverse applications ranging from photovoltaics and electronics to catalysis. Control over the organic and inorganic components offers flexibility through tuning their chemical and physical properties. Herein, it is reported that a new organic–inorganic hybrid, [Mn(C2H6OS)6]I4, with linear tetraiodide anions exhibit an ultralow thermal conductivity of 0.15 ± 0.01 W m?1 K?1 at room temperature, which is among the lowest values reported for organic–inorganic hybrid materials. Interestingly, the hybrid compound has a unique 0D structure, which extends into 3D supramolecular frameworks through nonclassical hydrogen bonding. Phonon band structure calculations reveal that low group velocities and localization of vibrational energy underlie the observed ultralow thermal conductivity, which could serve as a general principle to design novel thermal management materials.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号