首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19178篇
  免费   950篇
  国内免费   137篇
电工技术   326篇
综合类   32篇
化学工业   4221篇
金属工艺   602篇
机械仪表   637篇
建筑科学   376篇
矿业工程   51篇
能源动力   1382篇
轻工业   1178篇
水利工程   149篇
石油天然气   84篇
武器工业   1篇
无线电   2375篇
一般工业技术   4382篇
冶金工业   1455篇
原子能技术   179篇
自动化技术   2835篇
  2024年   76篇
  2023年   414篇
  2022年   955篇
  2021年   1163篇
  2020年   908篇
  2019年   944篇
  2018年   1228篇
  2017年   964篇
  2016年   940篇
  2015年   612篇
  2014年   855篇
  2013年   1534篇
  2012年   902篇
  2011年   1082篇
  2010年   868篇
  2009年   830篇
  2008年   723篇
  2007年   588篇
  2006年   493篇
  2005年   374篇
  2004年   277篇
  2003年   250篇
  2002年   194篇
  2001年   181篇
  2000年   172篇
  1999年   172篇
  1998年   292篇
  1997年   247篇
  1996年   223篇
  1995年   176篇
  1994年   160篇
  1993年   152篇
  1992年   106篇
  1991年   136篇
  1990年   103篇
  1989年   95篇
  1988年   81篇
  1987年   90篇
  1986年   76篇
  1985年   88篇
  1984年   75篇
  1983年   76篇
  1982年   63篇
  1981年   72篇
  1980年   49篇
  1979年   33篇
  1978年   27篇
  1977年   26篇
  1976年   35篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
This article describes the development, optimization, and evaluation of Carbopol 940 topical gel containing aceclofenac-crospovidone (1:4) solid dispersion using “Quality by Design (QbD)” approach based on 23 factorial design. The effect of crospovidone, tri-ethanolamine, and ethyl alcohol amount on the drug permeation profile of the topical gel containing aceclofenac-crospovidone solid dispersion was optimized by 23 factorial design. The optimized gel showed improved permeation profile with cumulative drug permeation of 26.262 ± 2.157%, and permeation flux of 0.059 ± 0.011 μg/cm2/h. These gels were characterized by pH, viscosity, gel strength and FTIR study. The in vivo anti-inflammatory activity of the optimized gel was evaluated in rats using carrageenan-induced rat-paw oedema model and found excellent anti-inflammatory comparable with a marketed gel without producing any skin irritation.  相似文献   
992.
Bioleaching studies for chalcopyrite contained ball mill spillages are very scarce in the literature. We developed a process flow sheet for the recovery of copper metal from surface activated (600 °C, 15 min) ball mill spillage through bio-hydrometallurgical processing route. Bioleaching of the activated sample using a mixed meso-acidophilic bacterial consortium predominantly A. ferrooxidans strains was found to be effective at a lixiviant flow rate of 1.5 L/h, enabling a maximum 72.36% copper recovery in 20 days. Mineralogical as well as morphological changes over the sample surface were seen to trigger the bioleaching efficiency of meso-acidophiles, thereby contributing towards an enhanced copper recovery from the ball mill spillage. The bio-leach liquor containing 1.84 g/L Cu was purified through solvent extraction using LIX 84I in kerosene prior to the recovery of copper metal by electrowinning. Purity of the copper produced through this process was 99.99%.  相似文献   
993.
Experimental studies on the gas holdup in two tapered bubble columns using non-Newtonian pseudoplastic liquid have been reported. The effects of different variables such as gas flow rate, liquid viscosity, bed height, and orifice diameter of sieve plate on gas holdup have been investigated. An empirical correlation has been developed for the prediction of the gas holdup as a function of various measurable parameters of the system. The correlation is statistically acceptable.  相似文献   
994.
The effect of liquid and gas velocities, solid concentrations, and operating pressure has been studied experimentally in a 15 cm diameter air-water-glass beads bubble column. The superficial gas and liquid velocities varied from 1.0 to 40.00 cm/s and 0 to 16.04 cm/s, respectively, while the solid loading varied from 1 to 9%. The gas holdup in the column was reduced sharply as we switched from batch to co-current mode of operation. At low gas velocity, the effect of liquid velocity was insignificant; while at high gas velocity, increasing liquid velocity decreased the gas holdup. Drift flux approach was applied to quantify the combined effect of liquid and gas velocities over gas holdup. For co-current three phase flows, the gas holdup decreased with increase in solid loading for all pressures. But for batch operations, when solid loading was 5% or more, settling started leading to higher gas holdup. Increasing pressure from atmospheric conditions increased the gas holdup significantly, flattening asymptotically.  相似文献   
995.
Experimental investigation has been done in unbaffled gas-liquid stirred tanks using dual concave blade impeller to analyze the mass transfer, power consumption and gas holdup. Optimal impeller clearance has been suggested for lower and upper impeller based on maximum mass transfer rate. Numerical modeling has been done to analyze the flow pattern for different combinations of impeller clearance. The lower impeller positioned at 0.3 of tank diameter and clearance between lower and upper impeller at 0.4 of tank diameter gave the maximum mass transfer coefficient. Scale-up criteria for mass transfer rate, power and gas holdup have been developed for optimal geometrical similar systems of unbaffled stirred tanks with dual concave impeller.  相似文献   
996.
The Cr3+ ions doped multi-oxide ZnFe2−xCrxO4 ferrite nanoparticles have been synthesized by chemical co-precipitation method. Site occupancies of Zn2+, Cr3+ and Fe3+ ions were analyzed using X-ray diffraction data and Buerger's method. The effect of the constituent phase variation on the magnetic hysteresis behavior was examined by saturation magnetization which decreases with the increase in Cr3+ content in place of Fe3+ ions at octahedral B-site. Typical blocking temperature (TB) around 90 K was observed by zero field cooling and field cooling magnetization study. Room temperature Mössbauer spectra show two paramagnetic doublets (tetrahedral and octahedral sites). The isomer shifts of both doublets decrease whereas quadrupole splitting and relative area of tetrahedral A-site increases with increasing Cr3+ substitution. The dielectric constant (measured on compositions x=0, 0.4, 0.8 and 1.0) increases when the temperature increases as in the semiconductor. This behavior is attributed to the hopping of electrons between Fe2+ and Fe3+ ions with a thermal activation.  相似文献   
997.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   
998.
The solvothermal synthesis of highly luminescent and homogeneous Gd2O3:Eu3+ nanophosphor using diethylene glycol as medium, followed by controlled combustion with citric acid as fuel is reported. The influence of concentrations of carboxylic acid and metal cations on the structure, morphology and luminescence properties are investigated in detail. The microscopic investigations indicate the nanocrystalline nature and the strong influence of cation concentration on the size, shape and agglomeration of the particles. It is found that increase in concentration of metal cations lead to the reduction in agglomeration of nanophosphors. The large value of intensity parameter Ω2, suggested that Eu3+ ions reside in a more asymmetric environment, resulted in intense emission due to 5D07F2 electric dipole transition. Emission decay analysis of the samples exhibited one exponential nature. The samples prepared under optimum conditions showed a quantum efficiency of 78.63% and a moderately high life time of 1.217 ms.  相似文献   
999.
Here we report the preparation and characterization of a green composite based on high‐density polyethylene and Kaans grass (Saccharum spontaneum). The composites were prepared by conventional melt‐mixing method, using maximum loading of Kaans grass in powder form (KG‐filler) to achieve acceptable range of required properties. Maleic anhydride grafted polyethylene was used as compatibilizer to achieve effective interaction for improved surface adhesion which was confirmed by FT‐IR spectroscopy. Morphological studies revealed good interaction between the base polymer matrices and the KG‐fillers that improved the mechanical and thermal properties of the composites up to certain (10 phr) KG‐filler loading. Study on water absorption property revealed moderate increase in weight at higher KG‐filler loadings. Thermogravimetric analysis (TGA) and melt flow index (MFI) studies indicated retention of thermal stability and flow property of the HDPE/KG‐filler composite at lower filler loadings. POLYM. COMPOS., 36:2157–2166, 2015. © 2014 Society of Plastics Engineers  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号