首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2756篇
  免费   183篇
  国内免费   28篇
电工技术   52篇
综合类   12篇
化学工业   613篇
金属工艺   64篇
机械仪表   108篇
建筑科学   143篇
矿业工程   5篇
能源动力   184篇
轻工业   192篇
水利工程   44篇
石油天然气   28篇
无线电   261篇
一般工业技术   446篇
冶金工业   169篇
原子能技术   27篇
自动化技术   619篇
  2024年   8篇
  2023年   54篇
  2022年   99篇
  2021年   174篇
  2020年   153篇
  2019年   186篇
  2018年   181篇
  2017年   167篇
  2016年   155篇
  2015年   114篇
  2014年   186篇
  2013年   283篇
  2012年   199篇
  2011年   227篇
  2010年   145篇
  2009年   144篇
  2008年   83篇
  2007年   45篇
  2006年   57篇
  2005年   44篇
  2004年   26篇
  2003年   26篇
  2002年   28篇
  2001年   17篇
  2000年   14篇
  1999年   14篇
  1998年   22篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1991年   5篇
  1990年   5篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有2967条查询结果,搜索用时 10 毫秒
91.
In order to prepare a specific melanocortin type 2 receptor (MC2R) ligand, b1-24-corticotrophin was pre-pared in one-step reaction with [18F] SFB and b-1-24-corticotrophin pharmaceutical solution (1 mg/mL, pH=6.5). [18F]SFB was prepared in a semi-automated module in two steps with an overall radiochemical yield of 47% to EOB (not-decay corrected) in 90 min. The 18F-labeled intermediates and 18F-labeled peptide was checked by RTLC and HPLC. The results show that the radiochemical purity is >95% and the yield to EOB (not-decay corrected) is 29% for final 18F-labeled peptide at optimized conditions. Preliminary in vivo studies in normal mice were performed to deter-mine biodistribution of the 18F-labeled peptide for 150 min. The results show that the major tracer uptake is consistent with the natural distribution of MC2R receptors in mammals. Testes/blood and testes/muscle ratios for 18F-labeled peptide at 150 min were 184 and 1.56, respectively, and adipocyte/blood and adipocyte/muscle ratios at 120 min were 221 and 142, respectively. The data support the specific receptor binding of the radiolabeled peptide as reported for MC2R receptor accumulation in adipocytes and testes and demonstrates the retention of biological activity of the pep-tide. This tracer can be used in detection of MC2R distribution in malignancies and sex organ diseases.  相似文献   
92.
This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.  相似文献   
93.

This paper offers a recurrent neural network to support vector machine (SVM) learning in stochastic support vector regression with probabilistic constraints. The SVM is first converted into an equivalent quadratic programming (QP) formulation in linear and nonlinear cases. An artificial neural network for SVM learning is then proposed. The presented neural network framework guarantees obtaining the optimal solution of the SVM problem. The existence and convergence of the trajectories of the network are studied. The Lyapunov stability for the considered neural network is also shown. The efficiency of the proposed method is shown by three illustrative examples.

  相似文献   
94.
The impact of the exact temporal pulse structure on the potential cell and tissue sparing of ultra-high dose-rate irradiation applied in FLASH studies has gained increasing attention. A previous version of our biophysical mechanistic model (UNIVERSE: UNIfied and VERSatile bio response Engine), based on the oxygen depletion hypothesis, has been extended in this work by considering oxygen-dependent damage fixation dynamics on the sub-milliseconds scale and introducing an explicit implementation of the temporal pulse structure. The model successfully reproduces in vitro experimental data on the fast kinetics of the oxygen effect in irradiated mammalian cells. The implemented changes result in a reduction in the assumed amount of oxygen depletion. Furthermore, its increase towards conventional dose-rates is parameterized based on experimental data from the literature. A recalculation of previous benchmarks shows that the model retains its predictive power, while the assumed amount of depleted oxygen approaches measured values. The updated UNIVERSE could be used to investigate the impact of different combinations of pulse structure parameters (e.g., dose per pulse, pulse frequency, number of pulses, etc.), thereby aiding the optimization of potential clinical application and the development of suitable accelerators.  相似文献   
95.
In the present work, performance of new configuration of Micro-gas turbine cogeneration and tri-generation systems, with a steam ejector refrigeration system and Heat recovery Steam Generator (HRSG) are studied. A micro-gas turbine cycle produces 200 KW power and exhaust gases of this micro-gas turbine are recovered in an HRSG. The main part of saturated steam in HRSG is used through a steam ejector refrigeration system to produce cooling in summer. In winter, this part of saturated steam is used to produce heating. In the first part of this paper, performance evaluation of this system with respect to Energy Utilization Factor (EUF), Fuel Energy Saving Ratio (FESR), thermal efficiency, pinch point temperature difference, net power to evaporator cooling load and power to heat ratio is carried out. It has been shown that by using the present cogeneration system, one can save fuel consumption from about 23% in summer up to 33% in winter in comparison with separate generation of heating, cooling and electricity.  相似文献   
96.
In this paper, 3-dimensional numerical simulation of steady natural convective flow and heat transfer are studied in a single-ended tube with non-uniform heat input. Apart from some other applications, it serves as a simplified model of the single-ended evacuated solar tube of a water-in-glass evacuated tube solar water heater. It is assumed that the sealed end of tube to be adiabatic and also the tube opening to be subjected to copper–water nanofluid. Governing equations are derived based on the conceptual model in the cylindrical coordinate system. The governing equations have been then approximated by means of a fully implicit finite volume control method (FVM), using SIMPLE algorithm on the collocated arrangement. The study has been carried out for solid volume fraction 0 ≤ φ ≤ 0.05 and maximum heat flux 100 ≤ qm ≤ 700. Considering that the driven flow in the tube is influenced by the dimensions and the inclination angle of the solar tube, the flow patterns and temperature distributions are presented on different cross sectional planes and longitudinal sections, when the tube is positioned at different orientations.  相似文献   
97.
In this paper, the seismic behavior of wind turbines sitting on a finite flexible soil layer is investigated in three‐dimensional space. A numerical algorithm formulated in frequency domain is proposed in order to simulate the dynamic soil–structure interaction (SSI). The wind turbine is discretized using finite element method (FEM) while, the underlying soil is represented by complex dynamic stiffness functions based on cone models. A parametric study consisting of 24 ground motions and three soil profiles is carried out, and different response quantities of the wind tower model are calculated and presented in the paper. The free‐field ground motions are estimated based on an equivalent linear approach using SHAKE2000 computer software. Transfer functions for total acceleration of the wind tower are obtained under the considered soil profiles and the modal frequencies of the coupled wind turbine–soil foundation are estimated. It is shown that the response quantities such as displacement, rotation, acceleration, base shear and moment are significantly affected by SSI, although the effect of SSI on the fundamental frequencies of the wind tower is insignificant. The moment and shear force distribution along the height of the tower is highly influenced as the soil stiffness decreases. The change in seismic demand distribution along the tower height because of SSI is not addressed by simplified design approached and should be carefully considered in seismic design of wind towers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
98.
The current work presents a parametric study, which involves different generalized nonlinear mechanical formulations with different damping characteristics to account for the interaction between a monopile‐supported offshore wind turbine and the surrounding soil. The novelty of the study lies in the fact that recently developed nonlinear mechanical models used so far for the simulation of high‐damping rubber isolators are introduced to describe the nonlinear hysteretic soil behavior. More specifically, the first generalized mechanical model consists of a combination of elastoplastic and trilinear elastic elements (labeled as model 3), while the second model consists of trilinear hysteretic models connected in parallel with trilinear elastic springs and hysteretic dampers used to ensure that the unloading stiffness will be as close as possible to the initial stiffness of the system (labeled as model 4). These newly developed models are compared with well‐known models within the industry, namely, a model that comprises elastoplastic elements (labeled as model 1) and a model that comprises trilinear elastic springs (labeled as model 2). All these models provide exactly the same effective stiffness, but on the other hand different levels of damping are involved in each one of them. The goal of the present work is 3‐fold, introducing novel mechanical models for the simulation of soil behavior, to investigate the effect of different soil damping levels in the response of offshore wind turbines and to highlight the limitations of the commonly used models within the industry. To this end, the differences between the response due to different levels of damping characteristics and modeling approaches are shown, highlighting the importance of soil damping in the overall response of the system.  相似文献   
99.
This paper deals with numerical modeling of the hydraulic blade pitch actuator and its effect on the dynamic responses of a floating spar‐type wind turbine under valve fault conditions. A spar‐type floating wind turbine concept is modeled and simulated using an aero‐hydro‐servo‐elastic simulation tool (Simo‐Riflex [SR]). Because the blade pitch system has the highest failure rate, a numerical model of the hydraulic blade pitch actuator with/without valve faults is developed and linked to SR to study the effects of faults on global responses of the spar‐type floating wind turbine for different faults, fault magnitudes, and environmental conditions. The consequence of valve faults in the pitch actuator is that the blade cannot be pitched to the desired angle, so there may be a delay in the response due to excessive friction and the wrong voltage, or slit lock may cause runaway blade pitch. A short circuit may cause the blade to get stuck at a particular pitch angle. These faults contribute to rotor imbalance, which result in different effects on the turbine structure and the platform motions. The proposed method for combining global and hydraulic actuator models is demonstrated in case studies with stochastic wind and wave conditions and different types of valve faults.  相似文献   
100.
Bulletin of Engineering Geology and the Environment - The main objective of the current study is to apply a random forest (RF) data-driven model and prioritization of landslide conditioning factors...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号