首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   20篇
  国内免费   1篇
电工技术   1篇
化学工业   119篇
金属工艺   10篇
机械仪表   18篇
建筑科学   28篇
能源动力   14篇
轻工业   31篇
水利工程   2篇
石油天然气   2篇
无线电   28篇
一般工业技术   126篇
冶金工业   75篇
原子能技术   4篇
自动化技术   77篇
  2023年   7篇
  2022年   9篇
  2021年   13篇
  2020年   10篇
  2019年   7篇
  2018年   17篇
  2017年   19篇
  2016年   19篇
  2015年   14篇
  2014年   23篇
  2013年   45篇
  2012年   15篇
  2011年   39篇
  2010年   22篇
  2009年   23篇
  2008年   32篇
  2007年   23篇
  2006年   19篇
  2005年   17篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   10篇
  2000年   4篇
  1999年   14篇
  1998年   21篇
  1997年   13篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   6篇
  1987年   1篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   7篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1963年   1篇
排序方式: 共有535条查询结果,搜索用时 15 毫秒
61.
The concept of implementation of Six Sigma methodology was pioneered at Motorola in the 1980s with the aim of reducing quality costs. Six Sigma methodology has evolved into a statistically oriented approach to process, product or service quality improvement. It is a business performance improvement strategy used to improve profitability, to drive out waste in business processes and to improve the efficiency of all operations that meet or exceed customers' needs and expectations. A performance level of Six Sigma equates to 3-4 defects per million opportunities, where sigma is a statistical measure of the amount of variation around the process average. The average sigma level for most companies is three sigma. The authors offer guidance as to how companies may achieve Six Sigma performance. Organisations that have adopted the principles and concepts of Six Sigma methodology have realised that once they have achieved Five Sigma quality levels the only way to surpass the Five Sigma quality level is to redesign their products, processes and services from scratch. These circumstances have led to the development of what we call today 'design for Six Sigma'. Design for Six Sigma is a powerful approach to designing products, processes and services in a cost-effective and simple manner, to meet the needs and expectations of the customer  相似文献   
62.
Production of high-quality metal powders is becoming important to meet the increasing demand for manufacturing advanced materials. A number of standard powder production techniques have been developed to meet the increasing demand for high-purity metal powders. This paper discusses the different techniques of producing metal powder.  相似文献   
63.
Spinel Co x Mn1?x Fe2O4 (0≤x≤1) nano- crystals were successfully synthesized by a simple microwave-assisted combustion method. High-resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis was used to study the morphological variations and found the particle-like nanocrystal morphologies. Energy dispersive X-ray (EDX) results showed that the composition of the elements were relevant as expected from the combustion synthesis. Powder X-ray diffraction (XRD) analysis showed that all composition was found to have cubic spinel-type structure. Average crystallite size of the samples was found to be in the range of 10.36–21.16 nm. The lattice parameter decreased from 8.478 to 8.432 Å with increasing Co2+ content. Fourier transform infrared (FT-IR) spectra showed two strong absorption peaks observed at lower frequency (~435 to ~800 cm?1), which can be assigned to the M–O (Mn, Co, and Fe) bonds. UV-Visible diffuse reflectance spectroscopy (DRS) shows that the energy band gap of pure MnFe2O4 is 1.78 eV and with increase in the Co2+ ion, it increases from 1.87 to 2.33 eV. Addition of Co2+ in MnFe2O4 reduces the particle size, which can be confirmed by the blue shift in the photoluminescence (PL) spectra. Vibrating sample magnetometer (VSM) results that confirmed a weak ferromagnetic behavior for all composition with saturation magnetization values in the range of 50.05 ±04 to 67.09 °03 emu/g. All composition of spinel Co x Mn1?x Fe2O4 nano-crystals were successfully tested as catalyst for the oxidation of benzyl alcohol to benzaldehyde, which has resulted 87.32 and 94.28 % conversion efficiency of MnFe2O4 and Co0.6Mn0.4Fe2O4, respectively.  相似文献   
64.
Samarium titanate (Sm2TiO5) was prepared by solid-state synthesis and characterized by X-ray diffraction (XRD). Heat capacity measurements were carried out by differential scanning calorimeter (DSC) in the temperature range 298-800 K. Thermal expansion characteristics have been studied by high temperature X-ray diffraction technique (HTXRD) in the temperature range 298-1573 K. The heat capacity value at 298 K is 170 J K− 1 mol− 1. The percentage linear thermal expansion in the temperature range 298-1573 K along a, b and c axes are 0.96, 0.89 and 1.07 respectively. The average coefficient of thermal expansion value obtained in the present study for samarium titanate up to 1573 K is 10.8 × 10− 6 K− 1.  相似文献   
65.
We study the structural stability of surfactant coated ZnFe2O4 (ZF) nanoparticles of average particle size 10 nm annealed under different environments. The X-ray diffraction studies in oleic acid coated ZF (OC-ZF) show distinctly different phase transitions under different annealing conditions. The OC-ZF is reduced to α-Fe/ZnO phase under vacuum while it forms FeO/ZnO under argon whereas the ZnFe2O4 phase remains stable under air annealing. The simultaneous thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) coupled mass spectra (MS) in OC-ZF under argon atmosphere suggests that the residual carbon removes oxygen from the lattice to reduce the ZnFe2O4 phase into FeO/ZnO during argon annealing. Apart from CO and CO2 gas evolution at high temperature under argon annealing, creation of oxygen vacancies due to the random removal of oxygen under vacuum annealing, leads to direct interaction between Fe–Fe and the formation of metal Fe. It appears that the residual carbon aids the reduction of ZF and the formation of α-Fe/ZnO during vacuum annealing. After annealing at 1000 °C in vacuum, the magnetization is increased abruptly from 13.8 to 106.5 emu g−1. In sharp contrast, the air and argon annealed samples show a diminished magnetization of 1 emu g−1. The field cooled (FC) and zero FC magnetization of vacuum and argon annealed samples exhibit superparamagnetic and spin-glass type behavior respectively. Our results offer possibilities to switch a magnetically inactive material to an active one.  相似文献   
66.
67.
A new method of bone fracture fixation is considered in which small pins/darts are dynamically inserted into bone to prevent translation and rotation at the fracture site. An ABAQUS model was developed to analyze dart penetration in cortical and cancellous bone for varying dart diameter, material, and velocity, and cortical thickness. The method is advocated for bioresorbable darts, so polylactide (PLA) and magnesium are the materials examined in this study. Numerical results showed that magnesium darts can achieve full penetration in bone while suffering little damage. The PLA darts penetrated thin bone well, but substantial deformation was seen as the cortical thickness increased, especially for small diameter darts. As partial validation, prototype PLA fixation darts were fired into cadaveric bone with a custom nailer. As in the model, the PLA darts could penetrate thin cortices but saw gross deformation when impacted against thicker bone.  相似文献   
68.
As(V) removal using carbonized yeast cells containing silver nanoparticles   总被引:1,自引:0,他引:1  
The present study involves the development of adsorbent containing silver nanoparticles for arsenate removal using silver reducing property of a novel yeast strain Saccharomyces cerevisiae BU-MBT-CY1 isolated from coconut cell sap. Biological reduction of silver by the isolate was deduced at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400 °C for 1 h and its properties were analyzed using Fourier Transform Infra-Red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscope. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. As(V) adsorption efficiency of CCY and CSY was deduced in batch mode by varying parameters like contact time, initial concentration, and pH. Desorption studies were also carried out by varying the pH. The experimental data were fitted onto Langmuir and D-R Isotherms and Lagergren and pseudo second order kinetic models. The CSY was more efficient in arsenate removal when compared to CCY.  相似文献   
69.
The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (KDOC) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log KOW) greater than 4 there was a significant difference in KDOC between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in KDOC was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log KOW > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using KDOC values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems.  相似文献   
70.
A process is developed that combines soft lithographic molding with pulsed laser deposition (PLD) to make heteroepitaxial patterns of functional perovskite oxide materials. Micro‐ and nanostructures of sacrificial ZnO are made by micro molding in capillaries (MiMiC) and nano transfer molding, respectively, and used to screen the single crystalline substrates during subsequent PLD. ZnO is used because of its compatibility with the high temperatures reached during PLD and because of the ease of its removal after use by benefiting from its amphoteric nature. Sub‐micrometer sized lines of La0.67Sr0.33MnO3 are made by the transfer molding approach, preserving the anisotropic features expected for a fully oriented thin film and taking account for the magnetostatic contribution from the line shapes. Different patterns of SrRuO3 are made with lateral dimensions of a few micrometers having individual features for which electrical isolation is illustrated. The bottom‐up soft lithographic methods can be compliantly utilized for making epitaxial structures of various shapes and sizes in the μm down to the nm range, and offer unique opportunities for fundamental studies as well as for realizing technological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号