首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   29篇
  国内免费   9篇
电工技术   13篇
综合类   2篇
化学工业   121篇
金属工艺   29篇
机械仪表   16篇
建筑科学   33篇
能源动力   23篇
轻工业   35篇
水利工程   11篇
石油天然气   8篇
武器工业   2篇
无线电   56篇
一般工业技术   102篇
冶金工业   36篇
原子能技术   1篇
自动化技术   92篇
  2023年   10篇
  2022年   18篇
  2021年   35篇
  2020年   31篇
  2019年   27篇
  2018年   47篇
  2017年   46篇
  2016年   52篇
  2015年   27篇
  2014年   40篇
  2013年   49篇
  2012年   41篇
  2011年   44篇
  2010年   28篇
  2009年   18篇
  2008年   20篇
  2007年   14篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1989年   1篇
  1985年   4篇
  1982年   1篇
排序方式: 共有580条查询结果,搜索用时 15 毫秒
21.
Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc nanocomposite including 1 wt. % CSNs has the highest shear and tensile strength about 4.7 and 3.2 MPa, respectively. A small increment of Tg (~3 °C) and considerable increment of the ash content proved the enhancement of PVAc thermal characterization in the presence of CSNs. FESEM results showed uniform dispersion of nanoparticles throughout the PVAc matrix due to using the in situ emulsion polymerization process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48570.  相似文献   
22.
Despite the fact that the very early stages (several tens of seconds) of catalysed olefin polymerisation processes appear negligibly short with respect to the residence time of most industrial reactors, they are critical in terms of catalyst activation, obtaining good particle morphology, and avoiding irreparable problems caused by particle overheating. The different types of reactors that have been used over the course of the past few years are discussed in this feature article. It is shown that despite the difficulties encountered in finding the perfect experimental tool for this purpose, different configurations of stopped flow reactors can be used successfully to explore different aspects of what happens to the catalyst (supported and molecular) during these critical moments of polymerisation. © 2012 Canadian Society for Chemical Engineering  相似文献   
23.
Silicon - Thermodynamic stability, electronic and optical properties of the Zr2TiSi compound in the bulk and its [111] films have been investigated, based on the density functional theory (DFT)...  相似文献   
24.
25.
26.
Magnetotactic bacteria (MTB) naturally synthesize magnetic nanoparticles that are wrapped in lipid membranes. These membrane‐bound particles, which are known as magnetosomes, are characterized by their narrow size distribution, high colloidal stability, and homogenous magnetic properties. These characteristics of magnetosomes confer them with significant value as materials for biomedical and industrial applications. MTB are also a model system to study key biological questions relating to formation of bacterial organelles, metal homeostasis, biomineralization, and magnetoaerotaxis. The similar size scale of nano and microfluidic systems to MTB and ease of coupling to local magnetic fields make them especially useful to study and analyze MTB. In this Review, a summary of nano‐ and microtechnologies that are developed for purposes such as MTB sorting, genetic engineering, and motility assays is provided. The use of existing platforms that can be adapted for large‐scale MTB processing including microfluidic bioreactors is also described. As this is a relatively new field, future synergistic research directions coupling MTB, and nano‐ and microfluidics are also suggested. It is hoped that this Review could start to bridge scientific communities and jump‐start new ideas in MTB research that can be made possible with nano‐ and microfluidic technologies.  相似文献   
27.
28.
The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.  相似文献   
29.
Calcination of diatomite is an expensive process frequently resulting in products with unpredictable structure. Alternatively, calcination in swirling flow is an energy‐saving option. Computational fluid dynamics modeling of an experimental calcination process unit is presented. Experimental results and systematic collection of process data were used to define boundary condition for steady‐state and transient simulation runs. The comparison of experimental and simulation results shows the complexity of the calcination process. The results can be used for further process optimization.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号