首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   26篇
电工技术   1篇
化学工业   110篇
金属工艺   6篇
机械仪表   10篇
建筑科学   16篇
矿业工程   2篇
能源动力   23篇
轻工业   52篇
水利工程   1篇
石油天然气   2篇
无线电   11篇
一般工业技术   38篇
冶金工业   23篇
自动化技术   38篇
  2024年   4篇
  2023年   6篇
  2022年   14篇
  2021年   15篇
  2020年   10篇
  2019年   18篇
  2018年   20篇
  2017年   19篇
  2016年   10篇
  2015年   10篇
  2014年   22篇
  2013年   26篇
  2012年   25篇
  2011年   22篇
  2010年   15篇
  2009年   23篇
  2008年   18篇
  2007年   15篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
101.
The magnitude and driving forces of nocturnal evaporative losses, ETcnight, and the interactions of other surface energy fluxes and microclimatic variables under various climatic, soil, and management conditions are not well understood. Such relationships are important for ecophysiological studies. This research attempts to investigate such relationships. Furthermore, ETcnight can be a sizable portion of the daily total evaporative losses. Most empirical equations, especially ones that use solar or net radiation to estimate daily evapotranspiration (ET), either ignore or poorly treat the contribution of ETcnight to the daily total ET. Neglecting ETcnight can lead to errors in determining the daily or the sum-of-hourly ETc (i.e., ETcSOH) and can also cause cumulative errors when making long-term water balance analyses. In this paper, the magnitudes, trends, and contribution to the nocturnal surface energy balance of various microclimatic variables (air temperature, Ta; vapor pressure deficit, VPD; relative humidity, RH; and wind speed at 3?m, u3) and surface energy fluxes (ETcnight; soil heat flux, G; sensible heat flux, H; and net radiation, Rn); were quantified and interpreted for a nonstressed and subsurface-drip-irrigated maize canopy. The effect of microclimatic variables and surface energy flux components on the Bowen ratio energy balance system (BREBS)-measured ETcnight and daytime evaporative loss, ETcday, were investigated in the growing season of 2005 (i.e., April 22–September 30) and 2006 (May 12–September 27). The nighttime evaporative losses were high early in the season during partial canopy closure because of increased surface soil evaporation and were also high later in the season during and after leaf aging, physiological maturity, and leaf senescence. The seasonal average nighttime evaporative losses for 2005 and 2006 were 0.19 and 0.11??mm/night, respectively. Losses of 0.50?mm or more occurred in 2005 and 2006 on eight and seven nights, respectively. The seasonal total ETcnight, ETcday, and ETcSOH in 2005 were 31, 612, and 642?mm, respectively. The ETc values in 2006 were 16, 533, and 547?mm, respectively. In both years, the percent ratio of ETcday to ETcSOH usually was more than 80–85%. ETcnight was affected primarily by u3, VPD, and Ta. A strong relationship between ETcnight and nighttime sensible heat was observed. Some of the largest ratios of ETcnight to ETcSOH occurred on rainy nights with strong winds. Because of strong winds, the ETcnight was high owing to the clear coupling among all energy exchanges within and above the canopy as a result of the mixing of the lower boundary layer of the microclimate. The results of this study showed that the ETcnight can be up to 5% of the ETcSOH, even for a subsurface-drip-irrigated maize canopy in which the soil surface is usually dry, thus, less evaporative losses potential compared with the surface or sprinkler-irrigated surfaces in which ETcnight would be expected to be considerably higher because of wetter surface conditions. ETcnight needs to be quantified for different vegetation surfaces and management practices, surface wetting, and climatic conditions to better account for nighttime water losses and better understand nighttime energy balance mechanisms.  相似文献   
102.
103.
In wheat and flour processing, the quality control needs quick analytical tools for predicting physical, rheological, and chemical properties. In this study, near infrared reflectance (NIR) spectroscopy combined with artificial neural network (ANN) was used to predict the flour quality parameters that are protein content, moisture content, Zeleny sedimentation, water absorption, dough development time, dough stability time, degree of dough softening, tenacity (P), extensibility (L), P/G, strength, and baking test (loaf volume and loaf weight). A total of 79 flour samples of different wheat varieties grown in different regions of Turkey were chemically analyzed, and the results of both NIR spectrum (400–2,498 nm) and chemical analysis were used to train/test the network by applying various ANN architectures. Prediction of protein, P, P/G, moisture content, Zeleny sedimentation, and water absorption in particular gave a very good accuracy with coefficient of determination (R 2) of 0.952, 0.948, 0.933, 0.920, 0.917, and 0.832, respectively. The results indicate that NIR combined with the ANN can successfully be used to predict the quality parameters of wheat flour.  相似文献   
104.
International Journal of Steel Structures - Having knowledge of dynamic properties named as natural frequency and mode shapes during the design process is important to determine proper design...  相似文献   
105.
Although ambient processing is the key to low-cost organic solar cell production, high-vacuum thermal evaporation of LiF is often a limiting step, motivating the exploration of solution processing of LiF as an alternative electrode interlayer. Submonolayer films are realized with the assistance of polymeric micelle reactors that enable LiF particle deposition with controlled nanoscale surface coverage. Scanning Kelvin probe reveals a work function tunable with nanoparticle coverage with higher values than that of bare indium tin oxide (ITO).  相似文献   
106.
At present, carbon nanotube supported Pd catalysts are synthesized via NaBH4 reduction method to investigate their electro catalytic activity thorough formic acid electro oxidation. In order to optimize the synthesis conditions such as %Pd amount (X1), NaBH4 amount (times, X2), water amount (ml, X3), and time (min., X4), Central Composite Design (CCD) experiments are designed and determined by the Design-Expert program to determine the maximum observed current (mA/mgPd). Formic acid electro oxidation current density of the catalyst is computed by the model as 974.80 mA/mg Pd for the catalyst prepared at optimum operating conditions (41.14 for %Pd amount, 280.23 NaBH4 amount, 26.80 ml water amount, and 167.14 min time) obtained with numerical optimization method in CCD. This computed value is very close to the experimentally measured value as 920 mA/mg Pd. Finally, formic acid fuel cell measurements were performed on the Pd/CNT catalyst prepared at optimum operating conditions and compared with the commercial Pd black and Pt black catalysts. As a result, Pd/CNT exhibits better performance compared to Pd black, revealing that Pd/CNT is a promising catalyst for the direct formic acid fuel cell measurements.  相似文献   
107.
Biofilm formation by 30 Staphylococcus aureus dairy isolates and their control by phytochemicals were investigated. The majority of strains were biofilm positive by phenotypic analysis. The nuc and icaA genes were present in 30 and 27 strains, respectively. In addition, 13 strains were positive for all nuc, clfA, fnbA and icaA genes. The antimicrobial and antibiofilm activities of citral, cinnamaldehyde, eugenol, farnesol, limonene and terpinen‐4‐ol were also evaluated for seven strains. It was shown that the use of farnesol, cinnamaldehyde or terpinen‐4‐ol at a concentration of 2 mg/mL could be at least 80% effective on S. aureus strains and their biofilms.  相似文献   
108.
Modified Bellani plate atmometer has been offered as an alternative and simpler technique to combination-based equations to estimate evapotranspiration (ET) rate from green grass surface. However, there is a lack of information on its’ accuracy in humid climates. The evaporation rate (EA) from one type of atmometer marketed under the brand name ETgage? (or ETG) with a Number 30 green canvas cover that simulates the ET rate from a green grass surface was tested against the reference ET of a short green grass canopy (ETo) computed using the Food and Agriculture Organization of the United Nations Paper No. 56 Penman–Monteith (FAO56-PM) equation in two sites in north-central Florida. The ETG underestimated the ETo as much as 27%. The root mean square error (RMSE) of daily estimates of EA ranged from 1.03 to 1.15?mm. Data analyses indicated that the most of the poor performances and underestimations of the ETG occurred on rainy days. Using only the nonrainy day EA versus ETo relationship, the daily RMSE was as low as 0.47?mm and r2 was as high as 0.89, and the underestimations were within 3% of the ETo. Averaging daily ETG readings over 3 and 7 day periods considerably improved (lower RMSE and percent error, %E, and higher r2) ETo estimates. The ETG performed quite well on nonrainy days. The adjustment factors were developed and tabulated as a function of rainfall amount to adjust the EA values on rainy days. Results showed that an average adjustment factor of 0.84?(EA/0.84 = ETo) can be used as a practical number if rainfall observations are not available. The underestimations of the ETG on rainy days were attributed, in part, to the wetting of the green canvas cover due to the rainwater accumulations on it and to the lower diffusivity (higher resistance) value of the canvas cover (112–294?s?m?1) compared to the diffusivity of a green grass surface used in the ETo definition (70?s?m?1). Although it is found that the ETG is feasible and practical device, the EA values measured on rainy days require careful interpretation in humid and rainy climates such as Florida. The rainy day EA values should be used cautiously with the proper regression equation and adjustment factors to estimate ETo for irrigation scheduling if the input variables are not available to use the FAO56-PM equation for ETo estimates.  相似文献   
109.
Vibrio vulnificus is frequently associated with oysters, and since oysters are typically consumed raw on a half shell, they can pose a threat to public health due to ingestion of this pathogenic marine microorganism. Oysters should be processed to reduce the number of this pathogen. High pressure processing is gaining more and more acceptance among oyster processors due to its ability to shuck oysters while keeping the fresh-like characteristics of oysters. Nine strains of V. vulnificus were tested for their sensitivities to high pressure. The most pressure-resistant strain of V. vulnificus, MLT 403, was selected and used in the subsequent experiments to represent a worst case scenario for evaluation of the processing parameters for inactivation of V. vulnificus in oysters. To evaluate the effect of temperature on pressure inactivation of V. vulnificus, oyster meats were inoculated with V. vulnificus MLT 403 and incubated at room temperature for 24 h. Oyster meats were then blended and treated at 150 MPa for 4 min, and 200 MPa for 1 min. Pressure treatments were carried out at -2, 1, 5, 10, 20, 30, 40, and 45 degrees C. Cold temperatures (<20 degrees C) and slightly elevated temperatures (>30 degrees C) substantially increased pressure inactivation of V. vulnificus. For example, a 4-min treatment of 150 MPa at -2 and 40 degrees C reduced the counts of V. vulnificus by 4.7 and 2.8 log, respectively, while at 20 degrees C the same treatment only reduced counts by 0.5 log. Temperatures of -2 and 1 degrees C were used to determine the effect of pressure level, temperature, and treatment time on the inactivation of V. vulnificus infected to live oysters through feeding. To achieve a >5-log reduction in the counts of V. vulnificus in a relatively short treatment time (or=250 MPa at -2 or 1 degrees C.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号