首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   7篇
  国内免费   2篇
电工技术   8篇
化学工业   31篇
金属工艺   5篇
机械仪表   2篇
建筑科学   12篇
能源动力   43篇
轻工业   11篇
水利工程   2篇
石油天然气   4篇
无线电   35篇
一般工业技术   56篇
冶金工业   27篇
原子能技术   4篇
自动化技术   50篇
  2024年   3篇
  2023年   13篇
  2022年   10篇
  2021年   15篇
  2020年   6篇
  2019年   12篇
  2018年   14篇
  2017年   10篇
  2016年   10篇
  2015年   4篇
  2014年   9篇
  2013年   21篇
  2012年   10篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   14篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1992年   6篇
  1991年   5篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
41.
Vapour absorption cooling systems, powered by solar thermal energy, are now commercially manufactured in sizes ranging from 1.5 to over 20 RT (one refrigeration ton = 3.51 kW of cooling). The needed thermal energy at appropriate temperature potential can either be provided by solar thermal collectors or else from a solar pond. The paper gives the assessment criteria and results for technical and economic evaluation of the performance of absorption chiller using a solar pond. These results, based on Kuwait's environmental data and costs, have been compared with three alternate cooling systems, namely:
  • 1 Solar thermal collector absorption cooling system.
  • 2 Solar photovoltaic cooling system.
  • 3 Standard vapour compression cooling system.
The criteria, used for performance evaluation of the solar cooling systems on a technical basis, consists of assessing the extent to which such systems can make a positive contribution in a conserving fossil fuel. This is done by first estimating the total electrical energy needed by the standard system (defined in para. 3 above) to produce one unit of cooling output. Solar cooling systems are then analysed and compared with a standard system to establish their electrical energy saving or generation capability, after accounting for the parasitic electrical energy used in pump/fan motors and equivalent energy needed for the production of soft water (used-up in the cooling tower) from seawater desalination. The economic analysis considers the cost and life of subsystems and that of the electrical and water desalination plants to arrive at the unit cooling cost. The unit cooling is defined as the ratio of amortized capital investments plus operation and maintenance costs over the year and the total yearly cooling production by the system. The results show that the solar pond absorption cooling system is the closest competitor to the conventional cooling system.  相似文献   
42.
Journal of Mechanical Science and Technology - The load bearing capacity of weld is highly influenced by the mode of metal transfer which in turn is dependent on welding current and arc voltage....  相似文献   
43.
Lead Bismuth Eutectic (LBE) is increasingly getting more attraction as the coolant for advanced reactor systems. It is also the primary coolant of the Compact High Temperature Reactor (CHTR), being designed at BARC. A loop has been set up for thermal hydraulics, instrument development and material related studies relevant to CHTR. Steady state natural circulation experimental studies were carried out for different power levels. Transient studies for start-up of natural circulation in the loop, loss of heat sink and step power change have also been carried out. An 1D code named LeBENC has been developed at BARC to simulate the natural circulation characteristics in closed loops. The salient features of the code include ability to handle non-uniform diameter components, axial thermal conduction in fluid and heat losses from the piping to the environment. This paper deals with the experimental studies carried out in the loop. Detailed validation of the LeBENC code with the experimental data is also discussed in the paper.  相似文献   
44.
45.
This paper deals with the problem of determining the impurity distribution which will improve the minority carrier base transit time and figure of merit of transistors. From the study of a special form of doping distribution which presents a point of inflection in the resulting built-in electric field configuration, it is concluded that the optimum doping distributions derived through variational methods [2–4] do not necessarily offer a unique minimum for base transit time. A new technique called “The Segmentation Technique” is evolved to synthesise base impurity distributions for improved high frequency performance of present-day junction transistors. It is shown that typical impurity distributions presenting retarding field over a small portion of the base and an aiding field over the rest of the base region offer a significant improvement in base transit time and the high frequency figure of merit.  相似文献   
46.
Building integrated photovoltaic thermal (BIPVT) system has the potential to become a major source of renewable energy in the urban environment. In this paper, the system has been used as the roof top of a building to generate higher electrical energy per unit area and to produce necessary thermal energy required for space heating. One-dimensional transient model has been developed using basic heat transfer equations. On the basis of this model, an analysis has been carried in order to select an appropriate BIPVT system suitable for the cold climatic conditions of India. The PV performances, net energy gain and exergy of the building are determined. The results show that for a constant mass flow rate of air the system connected in series gives a better performance whereas for a constant velocity of air flow the system connected in parallel gives a better performance. The BIPVT system, fitted on the rooftop in an effective area of 65 m2, is capable of annually producing the net electrical and thermal exergies of 16,209 kW h and 1531 kW h, respectively, at an overall thermal efficiency of 53.7%.  相似文献   
47.
Integrating biomass energy generation with carbon capture will result in “carbon neutral” to “carbon negative” technology. Countries like India and China possess significant reserves of limestone. Calcium looping (CaL) technology can prove to be a promising option for carbon capture in these countries. The present work aims at improving the performance of CaL‐integrated biomass‐fired power plant (BFPP) by exploring different looping configurations. In this study, (i) standalone BFPP, (ii) conventional CaL (single stage), and (iii) double CaL‐integrated BFPP have been systematically evaluated. A comparative performance evaluation of these three plants in terms of energy, exergy and ecological assessment, has been carried out. A detailed parametric study and unit‐wise exergy analysis of the best configuration among the three are presented to identify the scope for further improvement in efficiency and energy savings.  相似文献   
48.
Molten salts have potential application as an efficient heat transfer medium in a primary and secondary heat exchanger in high temperature next‐generation nuclear power plant. Thermal hydraulic studies are vital for reliable and cost‐effective design of the nuclear power plant. Therefore heat transfer study of molten salts will play a vital role in this area. In this work, an experimental system was designed to study thermal hydraulics of the molten salt system up to 700°C. This work describes the pretest results of the experimental facility for extremely corrosive molten fluoride salts with a simulant thermia‐B as the working fluid. In the present work, the details of the system are discussed and thermal‐hydraulic data for heat transfer fluid thermia‐B has been presented. Experiments were carried out at Reynolds number in the range of 4500 to 40 500 and Prandtl number in the range of 34 to 144. Effect of Reynolds number, melting tank temperature, and heat input to test section on forced convective heat transfer was studied under turbulent conditions. Comparison of the experimental data with different empirical correlations has been presented.  相似文献   
49.
Porous conducting carbon fiber‐based composite paper is used as an electrode backing in the fuel cell assembly. It not only acts as a channel through which the reactant and product gases pass to and from the bipolar plate and the catalyst site but also helps in the flow of electrons. In order to perform its role efficiently, it should have sufficient strength, high electrical conductivity, and ideal porous structure. Carbon paper has been fabricated, which builds up the required composite properties. Studies have been conducted to optimize the fiber/matrix ratio in the carbon paper, while ensuring the perfect combination of porosity, mechanical strength, and electrical conductivity for an electrode in a proton electrolyte membrane fuel cells. Detail physico‐mechanical and electrochemical characterizations further ascertain that the fiber/matrix ratio plays an important role in tuning the composite properties. The polarization curve of the unit proton exchange membrane (PEM) fuel cell (with an effective electrode area 4 cm2) shows a peak power density of 916 mW/cm2 for the sample with fiber/matrix ratio of 65:35, which is almost the same as the commercially available sigracet gas diffusion layer (SGL) carbon paper tested under similar conditions. Further, proportionally enlarging the electrode area to 100 cm2 shows that the carbon paper not only shows almost repeatable results in a given set up but also scales up.  相似文献   
50.
A limited selection of samples of small and medium size air-conditioning equipment being marketed or manufactured in Kuwait was tested in an internationally reputed laboratory. The actual performance results obtained from laboratory tests were analyzed and compared with the commercially available information from the manufacturers for the same selected units. The analysis indicated the quality of air-conditioning equipment available to the Kuwaiti user.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号