首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3216篇
  免费   48篇
  国内免费   2篇
电工技术   45篇
综合类   9篇
化学工业   334篇
金属工艺   58篇
机械仪表   43篇
建筑科学   36篇
矿业工程   8篇
能源动力   36篇
轻工业   166篇
水利工程   10篇
石油天然气   4篇
无线电   233篇
一般工业技术   378篇
冶金工业   1609篇
原子能技术   48篇
自动化技术   249篇
  2023年   13篇
  2022年   26篇
  2021年   34篇
  2020年   18篇
  2019年   17篇
  2018年   19篇
  2017年   20篇
  2016年   41篇
  2015年   26篇
  2014年   41篇
  2013年   100篇
  2012年   72篇
  2011年   102篇
  2010年   86篇
  2009年   73篇
  2008年   71篇
  2007年   71篇
  2006年   51篇
  2005年   64篇
  2004年   58篇
  2003年   42篇
  2002年   48篇
  2001年   42篇
  2000年   28篇
  1999年   71篇
  1998年   520篇
  1997年   260篇
  1996年   202篇
  1995年   125篇
  1994年   115篇
  1993年   95篇
  1992年   36篇
  1991年   50篇
  1990年   47篇
  1989年   55篇
  1988年   40篇
  1987年   23篇
  1986年   30篇
  1985年   40篇
  1984年   20篇
  1983年   16篇
  1982年   21篇
  1981年   19篇
  1980年   19篇
  1978年   17篇
  1977年   41篇
  1976年   109篇
  1975年   15篇
  1974年   12篇
  1973年   19篇
排序方式: 共有3266条查询结果,搜索用时 31 毫秒
81.
Abstract

Cell exposure experiments at the air-liquid interface (ALI) are used increasingly as indicators for health effects and for the impact of aerosols on the lung. Thereby the aerosol particles are kept airborne and can deposit on a cell surface area similar to the human respiratory tract (RT). However, geometry and air flow rates of an ALI system deviate considerably from the RT. As the tissue-delivered particle dose to the lungs (TD) can hardly be measured, computer models of particle deposition are used here to mimic both the particle deposition at ALI and in the RT. An ALI exposure setup (VitroCell GmbH) for an airflow rate of 100 cm3 min?1 is selected, where the particle deposition model has been verified experimentally. For the RT we use the hygroscopic lung deposition model of Ferron et al. (2013 Ferron, G. A., S. Upadhyay, R. Zimmermann, and E. Karg. 2013. Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition. J. Aerosol Med. Pulm. Drug Deliv. 26 (2):10119. doi:10.1089/jamp.2011.0965.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). Model runs are performed for the particle deposition and for the deposited particles per surface area in both the ALI and the RT. The results show that the ALI-deposited mass is 1-2 orders of magnitude higher than in the alveolar region, because the surface area of the lung region is substantially larger. A particle size range from 40 to 450 nm is identified, where the ratio of both the deposition in a lung region and the deposition at the ALI varies by a factor less than two. Mean values for this ratio are 31 and 101 for the tracheo-bronchial and the alveolar region, respectively. The same size range is found for the ratio of the deposited particles per surface area in a lung region and at the ALI. For this range the mean surface deposition at the ALI is 23- and 1575-times larger than in the tracheo-bronchial and the alveolar lung region, respectively. The effect is partly compensated by different flow rate and cell size.

Copyright © 2020 American Association for Aerosol Research  相似文献   
82.
83.
High-pressure homogenization is a widely used process in the food, pharmaceutical, and cosmetic industry for producing emulsions. Because of small dimensions and high velocities, the experimental and numerical investigation of such a process is challenging. Hence, the development of products is mostly based on trial and error. In this paper, simulations of a generic high-pressure homogenization process using the Lagrangian, mesh-free smoothed particle hydrodynamics (SPH) method are presented and compared to experimental findings using Micro-Particle Image Velocimetry (μ-PIV). The SPH code has been developed and validated with the scope of simulating technical relevant multi-phase problems (Höfler et al. 2012). The present simulations cover the investigation of two different dynamic viscosities of the dispersed phase as well as different droplet trajectories. The comparison between the simulations and the experiments focusses on the velocity distribution of the continuous phase and the droplet deformation and breakup. In both cases a qualitatively good agreement is observed, demonstrating the ability of our SPH implementation for simulating technical relevant two-phase flows.  相似文献   
84.
We present a Python extension to the massively parallel HPC simulation toolkit waLBerla. waLBerla is a framework for stencil based algorithms operating on block-structured grids, with the main application field being fluid simulations in complex geometries using the lattice Boltzmann method. Careful performance engineering results in excellent node performance and good scalability to over 400,000 cores. To increase the usability and flexibility of the framework, a Python interface was developed. Python extensions are used at all stages of the simulation pipeline: they simplify and automate scenario setup, evaluation, and plotting. We show how our Python interface outperforms the existing text-file-based configuration mechanism, providing features like automatic nondimensionalization of physical quantities and handling of complex parameter dependencies. Furthermore, Python is used to process and evaluate results while the simulation is running, leading to smaller output files and the possibility to adjust parameters dependent on the current simulation state. C++ data structures are exported such that a seamless interfacing to other numerical Python libraries is possible. The expressive power of Python and the performance of C++ make development of efficient code with low time effort possible.  相似文献   
85.
We report image blurring and energy broadening effects in energy-filtered XPEEM when illuminating the specimen with soft X-rays at high flux densities. With a flux of 2×1013 photons/s, the lateral resolution in XPEEM imaging with either core level or secondary electrons is degraded to more than 50 nm. Fermi level broadening up to several hundred meV and spectral shift to higher kinetic energies are also systematically observed. Simple considerations suggest that these artifacts result from Boersch and Loeffler effects, and that the electron-electron interactions are strongest in the initial part of the microscope optical path. Implications for aberration corrected instruments are discussed.  相似文献   
86.
The Network Mobility (NEMO) protocol is needed to support the world-wide mobility of aircraft mobile networks across different access networks in the future IPv6 based aeronautical telecommunications network (ATN). NEMO suffers from the constraint that all traffic has to be routed via the home agent though. The already existing correspondent router (CR) protocol solves this triangular routing problem and permits to route packets on a direct path between the mobile network and the ground based correspondent nodes. We identify security deficiencies of this protocol that make it unsuitable for use within the ATN. We therefore propose a new route optimization procedure based on the CR protocol that provides a higher level of security. We evaluate our new protocol in three ways. We first conduct a simulation based handover performance study using an implementation of a realistic aeronautical access technology. We then investigate the mobility signaling overhead. Finally, we specify a threat model applicable for the aeronautical environment and use it to perform a security analysis of both the old and our new protocol. It is shown that our protocol is not only more secure but also provides better handover latency, smaller overhead in the aeronautical scenario and a higher level of resilience when compared to the original CR protocol.  相似文献   
87.
Due to size effects the mechanical behavior of micro-components with dimensions in the range of some 100 μm and structure details of about 10 μm differs markedly from those of larger components. This is a crucial aspect for the design of micro-components for applications where demands for high strength are critical. The present study, which was performed in the frame of the Collaborative Research Centre 499 (SFB 499), approaches this issue by investigating the relationship between production process, microstructure and the mechanical properties of micro-specimens made from zirconia using two different feedstocks. The specimens were produced by a sintering process. The sintering temperature was varied between 1,300 and 1,500°C. Mechanical and tribological behavior of the specimens was determined by three-point bending tests as well as static and sliding friction tests, respectively. Properties derived from these tests were then correlated to the surface states in the specimens such as porosity, edge radius and roughness. The strength of the micro-specimens was found to be significantly influenced by these surface features. Whilst low porosity alone is not sufficient for high strength, notch effects resulting from pores as well as surface roughness can lower the strength. With increasing edge radius the strength of the material also increases. The porosity, edge radius and surface roughness were mathematically correlated with the strength to allow for a forecast. Within the SFB 499 feedstocks with specific properties were designed and reliable processes were developed to guarantee desirable surface roughness and porosity in the specimens. A characteristic bending strength of about 2,000 MPa is realizable in the micro-specimens within a good statistical reliability. The tribological tests revealed that the wear properties of the zirconia micro-components are strongly dependent on the quality of the feedstock.  相似文献   
88.
    
Epitaxial YBa2Cu3O7– thin films (YBCO) and YBa2Cu3O7– /PrBa2Cu3O7– multilayers (Y/Pr) were irradiated with high-energy heavy ions (770 Mev208Pb) under various directions relative to thec-axis. The irradiation resulted in columnar defects tilted by from thec-axis. The angular dependence of their pinning activity was studied by measuring the anisotropy of the critical current density. TheJ c (B, T,) behavior of the irradiated YBCO thin films showed an additional peak, which exceeds the intrinsic pinning peak, exactly at the irradiation direction. The Y/Pr multilayers, however, showed an isotropicT c -enhancement by a factor of 5, without any additional structure in theJ c(B, T,) curve.  相似文献   
89.
90.
To mark our anniversary, we are presenting articles that have been particularly appreciated by readers of our online edition once again in print. Here: 3D-Printing for High Vacuum Applications 3D printing technology has made the leap from a home-based private practice to industrial manufacturing. Due to the increasing reliability of printers and increasing material diversity, especially in the metal sector, double-digit percentage growth rates are possible in the coming years. This thesis deals with the manufacture of parts made by 3D printing for high vacuum application. Different components are printed and examined for their vacuum compatibility. As shown furthermore, conventionally made standard components can be vacuum sealed to printed parts, which enables cost-effective production of more complex components, such as e.g. a vacuum chamber allows. In addition, functional components can already be realized in the manufacturing process. The integration of a system of flow channels directly into the wall of a chamber is just one example. Thus, such a chamber can be heated during evacuation and effectively cool in later operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号