首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4140篇
  免费   150篇
  国内免费   16篇
电工技术   38篇
综合类   6篇
化学工业   483篇
金属工艺   91篇
机械仪表   68篇
建筑科学   50篇
矿业工程   2篇
能源动力   72篇
轻工业   115篇
水利工程   26篇
石油天然气   4篇
无线电   412篇
一般工业技术   458篇
冶金工业   2095篇
原子能技术   30篇
自动化技术   356篇
  2023年   7篇
  2022年   22篇
  2021年   22篇
  2020年   31篇
  2019年   27篇
  2018年   57篇
  2017年   47篇
  2016年   51篇
  2015年   56篇
  2014年   78篇
  2013年   200篇
  2012年   101篇
  2011年   134篇
  2010年   124篇
  2009年   121篇
  2008年   127篇
  2007年   109篇
  2006年   79篇
  2005年   85篇
  2004年   67篇
  2003年   78篇
  2002年   63篇
  2001年   56篇
  2000年   57篇
  1999年   125篇
  1998年   711篇
  1997年   423篇
  1996年   263篇
  1995年   151篇
  1994年   126篇
  1993年   128篇
  1992年   32篇
  1991年   47篇
  1990年   29篇
  1989年   49篇
  1988年   48篇
  1987年   39篇
  1986年   30篇
  1985年   30篇
  1984年   7篇
  1983年   15篇
  1982年   14篇
  1981年   19篇
  1980年   20篇
  1978年   9篇
  1977年   52篇
  1976年   108篇
  1975年   11篇
  1974年   5篇
  1955年   4篇
排序方式: 共有4306条查询结果,搜索用时 93 毫秒
41.
This paper reports on self-aligned T-gate InGaP/GaAs FETs using n +/N+/δ(P+)/n structures. N+ -InGaP/δ(P+)-InGaP/n-GaAs forms a planar-doped barrier. The inherent ohmic gate of camel-gate FETs together with a highly selective etch between an InGaP and a GaAs layers offers a self-aligned T-shape gate with a reduced effective length. A fabricated device with a reduced gate dimension of 1.5×100 (0.6×100) μm2 obtained from 2×100 (1×100) μm2 gate metal exhibits an extrinsic transconductance, unity-current gain frequency, and unity-power gain frequency of 78 (80) mS/mm, 9 (19.5), and 28 (30) GHz, respectively  相似文献   
42.
Based on the two-dimensional Poisson equation, the surface potential distribution along the surface channel of a MOSFET has been analytically derived by assuming negligible source and drain junction depths and its minimum potential is then used to determine the threshold voltage. The existence of a minimum surface potential point along the channel of a MOSFET under an applied drain bias is consistent with the numerical results of the two-dimensional analysis. The effects of finite source and drain junction depths have been elegantly included by modifying the depletion capacitance under the gate and the resulted threshold voltage model has been compared to the results of the two-dimensional numerical analysis. It has been shown that excellent agreement between these results has been obtained for wide ranges of substrate doping, gate oxide thickness, channel length (< 1 μm), substrate bias, and drain voltage. Moreover, comparisons between the developed model and the existing experimental data have been made and good agreement has been obtained. The major advantages of the developed model are that no iterations and no adjustable fitting parameters are required. Therefore, this simple and accurate threshold voltage model will become a useful design tool for ultra short channel MOSFETs in future VLSI implementation.  相似文献   
43.
We present the properties of soft morphological operations and the new definitions of binary soft morphological operations. It is shown that soft morphological filtering an arbitrary signal is equivalent to decomposing the signal into binary signals, filtering each binary signal with a binary soft morphological filter, and then reversing the decomposition. This equivalence allows problems in the analysis and the implementation of soft morphological operations in real time by using only logic gates for binary signals instead of sorting the numbers. The architectures of logic-gate implementation of soft morphological operations are also presented. Furthermore, unlike standard morphological filters, the soft morphological closing and opening are in general not idempotent. We develop the conditions and properties for a new class of idempotent soft morphological filters  相似文献   
44.
A new class of ladder‐type dithienosilolo‐carbazole ( DTSC ), dithienopyrrolo‐carbazole ( DTPC ), and dithienocyclopenta‐carbazole ( DTCC ) units is developed in which two outer thiophene subunits are covalently fastened to the central 2,7‐carbazole cores by silicon, nitrogen, and carbon bridges, respectively. The heptacyclic multifused monomers are polymerized with the benzothiadiazole ( BT ) acceptor by palladium‐catalyzed cross‐coupling to afford three alternating donor‐acceptor copolymers poly(dithienosilolo‐carbazole‐alt‐benzothiadiazole) ( PDTSCBT) , poly(dithienocyclopenta‐carbazole‐alt‐benzothiadiazole) ( PDTCCBT), and poly(dithienopyrrolo‐carbazole‐alt‐benzothiadiazole) ( PDTPCBT) . The silole units in DTSC possess electron‐accepting ability that lowers the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PDTSCBT , whereas stronger electron‐donating ability of the pyrrole moiety in DTPC increases the HOMO and LUMO energy levels of PDTPCBT . The optical bandgaps (Egopt) deduced from the absorption edges of thin film spectra are in the following order: PDTSCBT (1.83 eV) > PDTCCBT (1.64 eV) > PDTPCBT (1.50 eV). This result indicated that the donor strength of the heptacyclic arenes is in the order: DTPC > DTCC > DTSC . The devices based on PDTSCBT and PDTCCBT exhibited high hole mobilities of 0.073 and 0.110 cm2 V?1 s?1, respectively, which are among the highest performance from the OFET devices based on the amorphous donor‐acceptor copolymers. The bulk heterojunction photovoltaic device using PDTSCBT as the p‐type material delivered a promising efficiency of 5.2% with an enhanced open circuit voltage, Voc, of 0.82 V.  相似文献   
45.
In this work, for the first time, the addition of aluminum oxide nanostructures (Al2O3 NSs) grown by glancing angle deposition (GLAD) is investigated on an ultrathin Cu(In,Ga)Se2 device (400 nm) fabricated using a sequential process, i.e., post‐selenization of the metallic precursor layer. The most striking observation to emerge from this study is the alleviation of phase separation after adding the Al2O3 NSs with improved Se diffusion into the non‐uniformed metallic precursor due to the surface roughness resulting from the Al2O3 NSs. In addition, the raised Na concentration at the rear surface can be attributed to the increased diffusion of Na ion facilitated by Al2O3 NSs. The coverage and thickness of the Al2O3 NSs significantly affects the cell performance because of an increase in shunt resistance associated with the formation of Na2SeX and phase separation. The passivation effect attributed to the Al2O3 NSs is well studied using the bias‐EQE measurement and J–V characteristics under dark and illuminated conditions. With the optimization of the Al2O3 NSs, the remarkable enhancement in the cell performance occurs, exhibiting a power conversion efficiency increase from 2.83% to 5.33%, demonstrating a promising method for improving ultrathin Cu(In,Ga)Se2 devices, and providing significant opportunities for further applications.  相似文献   
46.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
47.
Four soluble dialkylated tetrathienoacene ( TTAR) ‐based small molecular semiconductors featuring the combination of a TTAR central core, π‐conjugated spacers comprising bithiophene ( bT ) or thiophene ( T ), and with/without cyanoacrylate ( CA ) end‐capping moieties are synthesized and characterized. The molecule DbT‐TTAR exhibits a promising hole mobility up to 0.36 cm2 V?1 s?1 due to the enhanced crystallinity of the microribbon‐like films. Binary blends of the p‐type DbT‐TTAR and the n‐type dicyanomethylene substituted dithienothiophene‐quinoid ( DTTQ‐11 ) are investigated in terms of film morphology, microstructure, and organic field‐effect transistor (OFET) performance. The data indicate that as the DbT‐TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron‐only) to ambipolar and then back to unipolar (hole‐only). With a 1:1 weight ratio of DbT‐TTAR DTTQ‐11 in the blend, well‐defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm2 V?1 s?1, respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high‐performance solution‐processable OFETs.  相似文献   
48.
The ubiquitous adoption of WiFi introduces large diversity in types of application requirements and topological characteristics. Consequently, considerable attention is being devoted to making WiFi networks controllable without compromising their scalability. However, the main MAC protocol of WiFi, distributed coordination function (DCF), is a contention-based protocol using random backoff. Thus, operating under DCF, the access of channel is hard to control and nonpredictable. In order to provide controllability of channel access in WiFi, we propose Rhythm, a MAC protocol that achieves scheduled WiFi efficiently using distributed contention. By achieving scheduled WiFi, channel access can be controlled by manipulating the schedule decision. We evaluate the performance of Rhythm through analysis, experiments, and case-studies.  相似文献   
49.
For the first time, experimental results are presented for electron and hole mobilities in the electron and hole accumulation layers of a MOSFET for a wide range of doping concentrations. Also presented is an improved methodology that has been developed in order to enable more accurate extraction of the accumulation layer mobility. The measured accumulation layer mobility for both electrons and holes is observed to follow a universal behavior at high transverse electric fields, similar to that observed for minority carriers in MOS inversion layers. At low to moderate transverse fields, the effective carrier mobility values are greater than the bulk mobility values for the highest doping levels. This is due to screening by accumulated carriers of the ionized impurity scattering by accumulated carriers, which dominates at higher doping concentrations. For lower doping levels, surface phonon scattering is dominant at low to moderate transverse fields so that the carrier mobility is below the bulk mobility value  相似文献   
50.
High-power broad-area InGaNAs/GaAs quantum-well (QW) edge-emitting lasers on GaAs substrates in the 1200 nm range are reported. The epitaxial layers of the InGaNAs/GaAs QW laser wafers were grown on n+-GaAs substrates by using metal-organic chemical vapor deposition (MOCVD). The thickness of the InGaNAs/GaAs QW layers is 70 Å/1200 Å. The indium content (x) of the InxGa1−xNyAs1−y QW layers is estimated to be 0.35-0.36, while the nitrogen content (y) is estimated to be 0.006-0.009. More indium content (In) and nitrogen content (N) in the InGaNAs QW layer enables the laser emission up to 1300 nm range. The epitaxial layer quality, however, is limited by the strain in the grown layer. The devices were made with different ridge widths from 5 to 50 μm. A very low threshold current density (Jth) of 80 A/cm2 has been obtained for the 50 μm × 500 μm LD. A number of InGaNAs/GaAs epi-wafers were made into broad-area LDs. A maximum output power of 95 mW was measured for the broad-area InGaNAs/GaAs QW LDs. The variations in the output powers of the broad-area LDs are mainly due to strain-induced defects the InGaNAs QW layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号