首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4171篇
  免费   92篇
  国内免费   15篇
电工技术   29篇
综合类   6篇
化学工业   557篇
金属工艺   72篇
机械仪表   72篇
建筑科学   37篇
矿业工程   2篇
能源动力   128篇
轻工业   89篇
水利工程   12篇
石油天然气   8篇
无线电   312篇
一般工业技术   545篇
冶金工业   2097篇
原子能技术   16篇
自动化技术   296篇
  2023年   39篇
  2022年   77篇
  2021年   77篇
  2020年   65篇
  2019年   65篇
  2018年   73篇
  2017年   77篇
  2016年   81篇
  2015年   51篇
  2014年   78篇
  2013年   168篇
  2012年   103篇
  2011年   119篇
  2010年   102篇
  2009年   91篇
  2008年   85篇
  2007年   78篇
  2006年   73篇
  2005年   44篇
  2004年   46篇
  2003年   42篇
  2002年   40篇
  2001年   38篇
  2000年   24篇
  1999年   83篇
  1998年   616篇
  1997年   368篇
  1996年   228篇
  1995年   145篇
  1994年   146篇
  1993年   142篇
  1992年   40篇
  1991年   61篇
  1990年   38篇
  1989年   51篇
  1988年   47篇
  1987年   37篇
  1986年   49篇
  1985年   38篇
  1984年   29篇
  1983年   24篇
  1982年   29篇
  1981年   31篇
  1980年   32篇
  1979年   20篇
  1978年   19篇
  1977年   71篇
  1976年   132篇
  1975年   10篇
  1973年   10篇
排序方式: 共有4278条查询结果,搜索用时 15 毫秒
71.
The formation of Fe3O4 nanoparticles by hydrothermal process has been studied. X‐ray Diffraction measurements were carried out to distinguish between the phases formed during the synthesis. Using the synthesized Fe3O4 nanoparticles, poly(vinyledene fluoride)‐Fe3O4 composite films were prepared by spin coating method. Scanning electron microscopy of the composite films showed the presence of Fe3O4 nanoparticles in the form of aggregates on the surface and inside of the porous polymer matrix. Differential Scanning calorimetry revealed that the crystallinity of PVDF decreased with the addition of Fe3O4. The conductitivity of the composite films was strongly influenced by the Fe3O4 content; conductivity increased with increase in Fe3O4 content. Vibration sample magnetometry results revealed the ferromagnetic behavior of the synthesized iron oxide nanoparticles with a Ms value of 74.50 emu/g. Also the presence of Fe3O4 nanoparticles rendered the composite films magnetic. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
72.
73.
Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications.  相似文献   
74.
Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of I G/I D is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. M?ssbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles.  相似文献   
75.
The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeOx manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.  相似文献   
76.
Thermoplastic polyurethane (TPU) and polydimethyl siloxane rubber (PDMS) are two major polymers used extensively for biomedical applications. Blending of these polymers combines the superior mechanical properties, abrasion resistance, solvent resistance and aging resistance of TPU with chemical stability, inertness, flexibility and biocompatibility of PDMS. In the present investigation, an 80:20 blend of TPU and PDMS was selected for the preparation of an in situ compatibilized blend using ethylene methyl acrylate copolymer (EMA) as the compatibilizer. Effect of EMA on blends of ester type and ether type TPU with PDMS was studied. From the results obtained from torque rheometry, mechanical property evaluation, fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM), it was concluded that 5 wt% of compatibilizer effectively compatibilized an 80:20 blend of ester type TPU and PDMS, whereas similar blend of ether type TPU required only 2 wt% compatibilizer.  相似文献   
77.
Lately, there has been considerable interest in the development of more efficient processes to generate syngas, an intermediate in the production of fuels and chemicals, including methanol, dimethyl ether, ethylene, propylene and Fischer–Tropsch fuels. Steam methane reforming (SMR) is the most widely applied method of producing syngas from natural gas. Dry reforming of methane (DRM) is a process that uses waste carbon dioxide to produce syngas from natural gas. Dry reforming alone has not yet been implemented commercially; however, a combination of steam methane reforming and dry reforming of methane (SMR + DRM) has been used in industry for several years.  相似文献   
78.
Zeolites have been widely used for the processes of adsorption, separation, and catalysis, which are strongly correlated with molecular diffusion. However, the correlation between pore dimension and diffusion properties has not been systematically investigated so far. In this work, the diffusion properties of alkanes in six zeolites with similar pore sizes but different pore dimension have been examined. It is found that the diffusion coefficients of alkanes in zeolites are 2–5 orders of magnitude smaller than that in gas phase. Moreover, the diffusion of alkanes inside zeolites is sensitive to the pore dimension, and can be differentiated by 1-D straight, 1-D tortuous, and 3-D intersecting channels, based on the derived quantitative correlation between the diffusion behavior and pore dimension. Our work may not only provide deep insights into the effects of pore dimension on diffusion, but also benefits for the future design and practical applications of zeolite catalysts.  相似文献   
79.
Improved prodrug-activating enzymes have the potential to increase the therapeutic efficacy of gene-directed enzyme prodrug therapy (GDEPT). Yeast cytosine deaminase (yCD) is commonly used to convert the prodrug 5-fluorocytosine (5-FC) to the chemotherapeutic 5-fluorouracil for GDEPT. Mutagenesis studies on yCD aimed at improving its application in GDEPT have been limited to subsets of residues or have sought to improve a single property of the enzyme. We performed comprehensive site-saturation mutagenesis (CSM) on yCD designed to create all 2,983 possible unique protein mutants with a single amino acid substitution. We identified active variants through Escherichia coli genetic complementation and screened these mutants, and combinations thereof, for increased ability to sensitize E. coli and HT1080 fibrosarcoma cells to 5-FC. Several mutants identified in this study showed increased sensitization ability for both E. coli and HT1080 cells indicating that CSM is an effective directed evolution tool for identifying unexpectedly beneficial mutations.  相似文献   
80.
Past sequencing campaigns overlooked small proteins as they seemed to be irrelevant due to their small size. However, their occurrence is widespread, and there is growing evidence that these small proteins are in fact functionally very important in organisms found in all kingdoms of life. Within a global proteome analysis for small proteins of the archaeal model organism Haloferax volcanii, the HVO_2922 protein has been identified. It is differentially expressed in response to changes in iron and salt concentrations, thus suggesting that its expression is stress-regulated. The protein is conserved among Haloarchaea and contains an uncharacterized domain of unknown function (DUF1508, UPF0339 family protein). We elucidated the NMR solution structure, which shows that the isolated protein forms a symmetrical dimer. The dimerization is found to be concentration-dependent and essential for protein stability and most likely for its functionality, as mutagenesis at the dimer interface leads to a decrease in stability and protein aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号