首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   1篇
石油天然气   2篇
无线电   3篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2019年   1篇
  2018年   2篇
  2013年   1篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.

Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Pdx (x = 1, 2, 3, and 4 atomic percent, at. pct) bulk metallic glasses (BMGs) with potential for biomedical applications were fabricated by copper-mold casting. The Ti-based BMGs exhibited high glass-forming ability (GFA) with critical diameters of 4 to 5 mm and a supercooled liquid region over 50 K, though the high contents of Pd slightly decreased the GFA. The additions of 2 and 3 at. pct Pd benefited the improvement of plasticity, and the resultant BMGs showed the relatively low Young’s modulus of about 100 GPa, high compressive strengths of 2174 to 2340 MPa, and compressive plastic strain of around 4 pct. The addition of Pd also decreased the passive current density and increased the pitting potential of the Ti-based BMGs in the Hank’s solution, leading to the enhanced bio-corrosion resistance of the BMGs. Furthermore, the cell adhesion, viability, and proliferation behaviors revealed that the present Ti-based BMGs possess as good biocompatibility as that of the Ti-6Al-4V alloy. These results demonstrated the potential of the Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd BMGs as biomedical materials.

  相似文献   
12.
Feng  Chenhe  Ye  Baoyun  An  Chongwei  Zhang  Fuyong  Hong  Zhiwei  Wang  Jingyu 《Journal of Materials Science》2021,56(35):19599-19613
Journal of Materials Science - Coordination compounds are very promising as energetic materials and catalysts for improving the comprehensive performance of solid propellants. In this study, to...  相似文献   
13.
为实现罗茨泵直谷转子型线的造型参数化与尺寸最优化。基于直谷型线与峰型线的共轭关系,通过法线法的旋转和平移的矩阵变换,构建出实际型线最简洁的全参数化的坐标方程与3D模型;其次,以节圆半径为设计变量,转子副所占方体空间的最小体积为目标函数,构建单变量优化模型和实例分析。结果表明:直谷转子的最大谷部尺寸以容积利用率最小化为代价,多适用于有粗轴需求的特定场合。转子叶数对泵体积的影响很大,3叶是2叶的1.84倍;4叶是2叶的3.04倍;直谷型多适用2叶转子。参数化转子副的实例造型和节圆半径的优选结果,说明型线方程正确,优选结果可靠。为泵用其它型线的转子,提供一种全参数的造型和设计方法。  相似文献   
14.
对基于全耗尽绝缘体上硅(FDSOI)的隧穿场效应晶体管(TFET)器件和金属氧化物半导体场效应晶体管(MOSFET)器件进行了总剂量(TID)效应仿真,基于两种器件不同的工作原理,研究了总剂量效应对两种器件造成的电学影响,分析了辐照前后TFET和MOSFET的能带结构、载流子密度等关键因素的变化。仿真结果表明:两种器件在受到较大辐射剂量时(1 Mrad (Si)),TFET受辐射引起的固定电荷影响较小,仍能保持较好的开关特性、稳定的阈值电压;而MOSFET则受固定电荷的影响较大,出现了背部导电沟道,其关态电流增加了几个数量级,开关特性发生了严重退化,阈值电压也严重地向负电压偏移。此外,TFET的开态电流会随着辐照剂量的增加而减小,这与MOSFET的表现恰好相反。因此TFET比MOSFET有更好的抗总剂量效应能力。  相似文献   
15.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   
16.
将世界海洋仿真系统(World Ocean Simulation System,WOSS)与声射线模型Bellhop结合并引入海洋噪声经验公式对NS-Miracle仿真系统的水声传输信道模拟方法进行扩展.为了验证扩展后的仿真系统,实验采用了基于水声信道特征经验模型、Bellhop射线模型及WOSS结合Bellhop射线...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号