首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   81篇
  国内免费   2篇
电工技术   14篇
综合类   1篇
化学工业   172篇
金属工艺   9篇
机械仪表   11篇
建筑科学   21篇
能源动力   41篇
轻工业   35篇
水利工程   3篇
无线电   133篇
一般工业技术   185篇
冶金工业   11篇
自动化技术   110篇
  2022年   1篇
  2021年   7篇
  2020年   24篇
  2019年   39篇
  2018年   35篇
  2017年   25篇
  2016年   44篇
  2015年   43篇
  2014年   51篇
  2013年   90篇
  2012年   48篇
  2011年   35篇
  2010年   34篇
  2009年   37篇
  2008年   34篇
  2007年   18篇
  2006年   28篇
  2005年   22篇
  2004年   22篇
  2003年   24篇
  2002年   14篇
  2001年   16篇
  2000年   8篇
  1999年   14篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有746条查询结果,搜索用时 46 毫秒
91.
The sulfonyl epoxy monomer (SEP) was synthesized and further to blend with the diglycidyl ether of bisphenol A (DGEBA). The glass transition temperature (Tg) of the SEP/DGEBA blended materials increased from 103.7 to 163.8°C. The cross‐linking density and polymer chain self‐association intra‐molecular action affected more than that the polymer–polymer intermolecular action (hydrogen bonding) in the SEP blended with the DGEBA materials. The excess stabilization energy in the overall stabilization was only 0.00145% (14.5 ppm), which indicated that the polymer‐polymer intermolecular action was weak. The thermal degradation of the SEP segments could form various sulfate derivatives at lower temperature and analyzed by the TGA/GC/Mass. The sulfate derivatives could generate the thermal stable chars, which provided the “shielding effect” and antioxidation property. Additionally, these chars could also improve the protective effect and inhibit the thermal‐oxidation decomposition under the air atmosphere. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
92.
Electrically conducting films containing AgNws, hydrophilic and hydrophobic resins were prepared. FT‐IR reveals that the interface between the AgNws and epoxy could be successfully modified by APTES. XPS shows that the AgNws were attracted by hydrogen bonds of ? NH2 and ? NH? groups after APTES modification. SEM analysis shows that the AgNws were well dispersed in the resin. The AgNws were also blended with hydrophilic and acrylic resins, and the resulting blends were compared with AgNws/epoxy blends. Results show that AgNw/PVA‐resin films possess the lowest surface electrical resistance. The AgNw/PVA‐resin and silane‐modified AgNw/epoxy resin conductive films possess a similar electrical percolation threshold.

  相似文献   

93.
DLC films were synthesized by RF plasma enhanced chemical vapor deposition and the effects of nitrogen plasma post-treatment at different pressures on the structure and properties of DLC films were investigated. Higher roughness was obtained after plasma post-treatment at higher pressures (0.3 and 0.9 torr) and plasma post-treatment at a lower pressure (0.15 torr) resulted in lower roughness than that of original films. The hardness of DLC films decreased with the decrease of post-treatment pressure, which is consistent with the Raman results of ID/IG ratio and G peak position. Compared to the original DLC film, the residual stress after plasma post-treatment decreased slightly due to the relatively thin region involved in the plasma post-treatment.  相似文献   
94.
A new type of negative photoresist, which incorporated nanosized silica into a photosensitive acrylic resin, was developed. First, free‐radical polymerization was employed to synthesize the acrylic resin, poly[methyl methacrylate/methacrylic acid/3‐(trimethoxysilyl) propyl methacrylate], and then a silica precursor, prepared by hydrolysis and condensation of tetraethoxysilane in a sol–gel process, was introduced into the as‐formed resin solution. After the addition of photosensitive monomers and photoinitiators, a negative‐type organic–inorganic photoresist was produced. The morphology of the UV‐cured photoresist, as observed by field emission scanning electron microscopy, indicated that the size of the silica domain in the material could be reduced from 300 to about 50 nm by appropriate dosage of 3‐(trimethoxysilyl) propyl methacrylate. Thermogravimetric analysis, dynamic mechanical analysis, differential scanning calorimetry, and thermal mechanical analysis were used to evaluate the thermal and dimensional stabilities of the cured photoresists. It was found that the thermal decomposition temperature and glass‐transition temperature increased, whereas the thermal expansion coefficients before and after the glass transition decreased, with increasing silica content. The incorporation of 3‐(trimethoxysilyl) propyl methacrylate also enhanced the thermal and dimensional stabilities; however, the level of enhancement was moderate for the thermal decomposition temperature and thermal expansion coefficient and low for the glass‐transition temperature. In addition, a photoresist coated on a copper substrate demonstrated high hardness (5H) and strong adhesion (100%) with a resolution of 30 μm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
95.
Intercalated or exfoliated novolac cured epoxy resin nanocomposites were prepared with two different kinds of layered silicates – montmorillonite (PK‐802) and nontronite (PK‐805). The bifunctional modifiers (PI/BEN or MI/BEN) are used to modify the clays for improvement of the properties of polymer where benzalkonium chloride (BEN) acts as a compatibilizing agent and 2‐phenylimidazole (PI) or 2‐methylimidazole (MI) as the accelerators. Both the compatibilizer and accelerator are simultaneously intercalated into the gallery space of pure clays to form the modified clay. The novolac cured epoxy nanocomposites are prepared with these modified clays by crosslinking polymerization reaction. The properties of novolac cured epoxy/clay nanocomposites were characterized by wide‐angle X‐ray diffraction (WAXD), thermo‐gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM) methods. According to the measurement, these novolac cured epoxy‐clay nanocomposites have been shown the significant improvement in the thermal, mechanical, and barrier properties that may be applied to make printed circuit board. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   
96.
97.
The purpose of this report was to develop solvent‐free biodegradable drug‐eluting implants that provide sustained release of metronidazole and doxycycline. The drug‐eluting implants were prepared using the compression molding technique. To fabricate the implants, polylactide‐polyglycolide copolymers were premixed with metronidazole or doxycycline. The mixture was then compression molded and sintered to form implants of various sizes and geometries. An elution method and an HPLC assay were used to characterize the in vitro release rates of the antibiotics over a 28‐day period. A bacterial inhibition test was also carried out to determine the bioactivity of released antibiotics. The concentrations of both metronidazole and doxycycline were much greater than the minimum inhibitory concentration of Escherichia coli for up to 3 and 4 weeks, respectively, and the bioactivities of the antibiotics remained high after the fabrication process. Furthermore, the initial burst could be minimized and the release rate could be reduced by increasing the size of the implants and by adopting low drug to polymer ratios. By using this compression molding technique and appropriate processing parameters, we will be able to fabricate biodegradable implants of various types of antibacterial drugs for long‐term local deliveries. Eventually, biodegradable drug‐eluting implants may be used to treat various periodontal diseases. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
98.
Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester, but its brittleness makes it unsuitable for many packaging and appliance applications. The goal of the work reported was to create novel poly(ester urethane)s that incorporate biodegradable poly(lactic acid) diols (PLA‐OHs) and good mechanical properties of increased molecular weight via crosslinked network formation for engineering plastics applications. Three kinds of polyols (PLA‐OHs, PLA‐OHs/poly(tetramethylene ether) glycol or PLA‐OHs/poly(butylene adipate) glycol (PBA)) and two kinds of diisocyanates (4,4‐diphenylmethane diisocyanate (MDI) or toluene 2,4‐diisocyanate (TDI)) were chosen for the soft and hard segments to compare their mechanical properties. In addition, 1,4‐butanediol and trimethylolpropane were each used as chain extender agents. Results showed the PLA/PBA‐polyurethanes (PLA/PBA‐PUs) of the MDI series and the PLA/PBA‐PUs of the TDI series had improved thermal stability and enhanced mechanical properties. Degradation behavior showed the PLA‐based polyurethanes could be degraded in phosphate‐buffered saline solution and enzyme solution. © 2012 Society of Chemical Industry  相似文献   
99.
The aim of this paper was to study the physical–chemical composition of the watermelon seed oil extracted by a mechanical process using an expeller and by a chemical process using hexane as the solvent. The watermelon seed oil had a high concentration of unsaturated fatty acids. The two primary sterols were stigmasterol and β-sitosterol, which corresponded to approximately 47 and 30% of the total phytosterols. The oil had a low tocopherol content (65.19 mg/kg for S and 73.19 mg/kg for E). Comparing the two extraction methods, extraction by expeller produced an oil of superior quality with respect to oxidative stability, carotenoids and Lovibond color. No significant differences were found between the two extraction methods with respect to the minor components of the oil considered as functional, such as phytosterols.  相似文献   
100.
This work reports a novel and effective procedure for manufacturing the mold insert of microlens arrays. First, the microlens arrays master is formed using room‐temperature imprint lithography and photoresist reflow process. Next, electroforming is carried out to fabriccate the metal mold insert from the master. Finally, microinjection molding is used to replicate the molded microlens arrays. The 200 × 200 arrays of molded microlens, with a diameter of 150 μm, a pitch of 200 μm, and a sag height of 11.29 μm for polycarbonate (PC) material and 11.24 μm for polymethylmethacrylate (PMMA) material have been successfully fabricated. The moldability for PMMA material is better than PC material on molded microlens arrays. The average surface roughness of the molded microlens arrays is 4.53 nm for PMMA material and 4.81 nm for PC material. The mold temperature is the most important processing factor for the focal length and sag height of molded microlens arrays. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号