首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4953篇
  免费   181篇
  国内免费   24篇
电工技术   74篇
综合类   8篇
化学工业   953篇
金属工艺   156篇
机械仪表   116篇
建筑科学   50篇
矿业工程   16篇
能源动力   307篇
轻工业   225篇
水利工程   36篇
石油天然气   20篇
无线电   649篇
一般工业技术   1158篇
冶金工业   725篇
原子能技术   34篇
自动化技术   631篇
  2023年   72篇
  2022年   92篇
  2021年   172篇
  2020年   146篇
  2019年   125篇
  2018年   169篇
  2017年   157篇
  2016年   184篇
  2015年   108篇
  2014年   185篇
  2013年   412篇
  2012年   215篇
  2011年   230篇
  2010年   199篇
  2009年   267篇
  2008年   179篇
  2007年   129篇
  2006年   128篇
  2005年   111篇
  2004年   99篇
  2003年   101篇
  2002年   88篇
  2001年   69篇
  2000年   66篇
  1999年   71篇
  1998年   145篇
  1997年   108篇
  1996年   120篇
  1995年   83篇
  1994年   83篇
  1993年   80篇
  1992年   59篇
  1991年   69篇
  1990年   68篇
  1989年   47篇
  1988年   46篇
  1987年   45篇
  1986年   42篇
  1985年   47篇
  1984年   31篇
  1983年   25篇
  1982年   26篇
  1981年   36篇
  1980年   20篇
  1979年   30篇
  1978年   30篇
  1977年   27篇
  1976年   33篇
  1975年   15篇
  1973年   13篇
排序方式: 共有5158条查询结果,搜索用时 843 毫秒
971.
In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1 ms?1, against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting–abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45° slope angle. Unlike other alloys, 60° slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60° cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45° slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60° slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60° cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear.  相似文献   
972.
7075 aluminum (Al) alloy as matrix and silicon carbide (SiC) as reinforcement has been identified since it has potential applications in aircraft and space industries because of lower weight to strength ratio, high wear resistance and creep resistance. Thorough investigations about the microstructure and characterization of Al alloy/SiC composite are needed so that metal matrix composites (MMCs) fabricated for aircraft and space industries are defect free and have sound microstructure. Objective of this research work are the fabrication and microstructural investigations of AA7075–SiCp MMCs. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 20–40 μm by stir casting process. The resulting as-cast composite structures are analyzed using scanning electron microscopy, X-ray diffraction (XRD), differential thermal analysis, and electron probe microscopic analysis (EPMA). SiCp distribution and interaction with 7075 Al alloy matrix is studied. The 7075 Al alloy–SiCp composite microstructure showed excellent SiCp distribution into 7075 Al alloy matrix. In addition to this, no evidence of secondary chemical reactions is observed in XRD and EPMA analysis. Decomposition step in derivative thermogravimetric curve is seen at temperature of 1,257, 1,210, and 1,256 °C for 7075 Al alloy, AA7075/10 wt.%/SiCp (20–40 μm) and AA7075/15 wt.%/SiCp (20–40 μm) composites, respectively. So, these composites can be successfully used for applications where temperature does not exceed beyond 1,250 °C.  相似文献   
973.
Silver nanoparticles sprayed onto a crystalline quartz substrate are characterized by means of the low-frequency Raman scattering. Contributions of silver nanoparticles of different sizes to the Raman scattering spectrum are estimated. Data of scanning electron microscopy are used to verify the validity of the results obtained.  相似文献   
974.
This article reports an inverse analysis of a transient conduction–radiation problem with variable thermal conductivity. Simultaneous retrieval of parameters is accomplished by minimizing the objective function represented by the square of the difference between the measured and the assumed temperature fields. The measured temperature field is calculated from the direct method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM). In the direct method, the FVM is used to obtain the radiative information and the LBM is used to solve the energy equation. With perturbations imposed on the measured temperature data, minimization of the objective function is achieved with the help of the genetic algorithm (GA). The accuracies of the retrieved parameters have been studied for the effects of the genetic parameters such as the crossover and the mutation rates, the population size, the number of generations and the effect of noise on the measured temperature data. A good estimation of parameters has been obtained.  相似文献   
975.
976.
Mg–Ni multilayers and Ni-rich Mg thin films were deposited by electron gun and pulsed laser deposition, respectively. Samples were submitted to thermal treatment in deuterium or hydrogen atmosphere at 423 K and 105 Pa pressure to promote the metal to hydride phase transition.The H chemical bonding in the multilayer samples, after annealing in H2 atmosphere, was examined by Fourier transform infrared spectroscopy: the obtained spectra suggest that the samples with the Mg:Ni=2:1 atomic ratio contain the Mg2NiH4 phase while the samples with lower Ni concentration contain both the MgH2 and the Mg2NiH4 phases.The effect of the Ni additive on the stability of the deuteride phase was studied by thermal desorption spectroscopy (TDS). The TDS spectra of the single-phase Mg2NiD4 samples show a TDS peak at 400 K. The TDS spectra of the two-phase samples show both the D2 desorption peak at 400 K and a second peak at higher temperature that we attributed to the dissociation of the MgD2 phase. The high-temperature peak shifts to lower temperatures by increasing the Ni content.It is suggested that in the two-phase samples, the lattice volumes having the Mg2Ni structure resulting from the dissociation of the Mg2NiD4 phase reduce the thermodynamic stability of the MgD2 phase.  相似文献   
977.
Nanostructured zinc oxide (nsZnO) films have been fabricated onto conducting indium–tin–oxide (ITO) coated glass plate, by cathodic electro-deposition to immobilize probe DNA specific to M. tuberculosis via physisorption based on strong electrostatic interactions between positively charged ZnO (isoelectric point = 9.5) and negatively charged DNA to detect its complementary target. Electrochemical studies reveal that the presence of nano-structured ZnO results in increased electro-active surface area for loading of DNA molecules. The DNA–nsZnO/ITO bioelectrode exhibits interesting characteristics such as detection range of 1 × 10?6 ? 1 × 10?12 M, detection limit of 1 × 10?12 M (complementary target) and 1 × 10?13 M (genomic DNA), reusability of about 10 times, response time of 60s and stability of up to 4 months when kept at 4°C.  相似文献   
978.
The compositions of lead lanthanum zirconate titanate PLZT [Pb(Zr0.57Ti0.43)O3 + x at% of La, where x = 3, 5, 6, 10 and 12] have been synthesized using mixed oxide route. The temperature dependent electromechanical parameters have been determined using vector impedance spectroscopy (VIS). The charge constant d 31 and elastic compliance s 11 E show a peak in all the samples at a temperature T mt much below the ferroelectric — paraelectric transition temperature, whereas the series resonance frequency f s shows a dip at these temperatures. The Poisson’s ratio σ E increases with temperature T showing a broad peak at a temperature higher than T mt . The voltage constant g 31 decreases and the planar coupling coefficient K p remains constant up to half of the T mt and then falls sharply with T. Half of the T mt can, therefore, be used for specifying the working temperature limit of the piezoceramics for the device applications.  相似文献   
979.
Surface Energetic Characterization of Nanoscale Fillers and Elastomers Almost any technically used rubber material is filled with particles in nanometer size, by which the properties of the material can be specific controlled. In modern car tires the used fillers have crucial influence on driving security (wet grip and ice grip), on fuel consumption (rolling resistance) and on the cost‐effectiveness (life time of the tire) [1].The first fillers used in rubber application were carbon blacks; actually in passenger car tires mostly surface modified silica is applied. The implementation of novel filler systems like organophilic modified layered silicates (organo‐clays) or carbon nanotubes is subject of intense research [2,3]. Surface energy and –polarity of the filler surface is a crucial, but often underestimated determining factor. All surface properties of rubber and filler have to be well balanced to get the nanoscale filler particles finely dispersed in the rubber matrix and also to obtain a good adhesion between polymer and filler surface.  相似文献   
980.
Rural Alaskan communities have special challenges to supply dependable heat and electric power while preserving environmental quality. To help address these issues in a coherent fashion, we have established an energy center at the University of Alaska Fairbanks. Initially, we will evaluate fuel cells and reformers in a test chamber, looking at both performance and reliability. Later, we will study the integration of the electric and other utilities and focus on arctic engineering issues. In designing the test chamber, we were confronted with a number of conflicting heat balance issues related to (1) additional heat for freeze protection and (2) removal of heat generated by people and equipment. This paper discusses some of the details of how we addressed these issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号