The mental workload (MWL) classification is a critical problem for quantitative assessment and analysis of operator functional state in many safety-critical situations with indispensable human–machine cooperation. The MWL can be measured by psychophysiological signals. In this work, we propose a novel restricted Boltzmann machine (RBM) architecture for MWL classification. In relation to this architecture, we examine two main issues: the optimal structure of RBM and selection of the most important EEG channels (electrodes) for MWL classification. The trial-and-error and entropy-based pruning methods are compared for the RBM structure identification. The degree of importance of EEG channels is calculated from the weights in a well-trained network in order to select the most relevant channels for classification task. Extensive comparative results showed that the selected EEG channels lead to accurate MWL classification across subjects. 相似文献
The aim of this work is to develop an Internet and fuzzy based control and data acquisition system for an industrial process plant which can ensure remote running and fuzzy control of a cement factory. Cases studies of the proposed system application in three cement factories in Algeria, SCAEK (Setif), SCIMAT (Batna), and SCT (Tebessa), are discussed. The remote process control consists of alarms generated during running of the processes while maintaining and synchronizing different regulation loops thus ensuring automatic running of processes smoothly. In addition, fuzzy control of the kiln and the other two mills ensures that the system is operational at all times with minimal downtime. The process control system contains different operator station (OP), alarms table and a provision to monitor trends analysis. The operator can execute any operation according to his authorised access assigned by the system administrator using user administration tool. The Internet technology is used for human security by avoiding all times presence of operators at site for maintenance. Further, in case of a breakdown, the problem would be remotely diagnosed and resolved avoiding requirement of an expert on site thus eliminating traveling cost, security risks, visa formalities, etc. These trips are difficult to organize (costs, visas, risks). So the enterprise can reduce downtimes and travel costs. In order to realize a process control system guided by operators in the main control room or through Internet, the process control is based on programming in PCS 7 utilizing Cemat library and Fuzzy Control++ Siemens tools. 相似文献
We present a refined entanglement concentration protocol (ECP) for an arbitrary unknown less-entangled four-electron-spin cluster state by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. In our ECP, the parties obtain not only the four-electron-spin systems in the partial entanglement with two unknown parameters, but also the less-entangled two-electron-spin systems in the first step. Utilizing the above preserved systems as the resource for the second step of our ECP, the parties can obtain a standard cluster state by keeping the robust odd-parity instances with two parity-check gates. Meanwhile, the systems in the rest three instances can be used as the resource in the next round of our ECP. The success probability of our ECP is largely increased by iteration of the ECP process. Moreover, all the coefficients of our ECP are unknown for the parties without assistance of extra single electron-spin, so our ECP maybe has good applications in quantum communication network in the future. 相似文献
Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475–2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices. 相似文献
A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch–Jozsa and Simon’s problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch–Jozsa problem with probability 1 using only one oracle query, and Simon’s problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch–Jozsa and Simon’s problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation. 相似文献
Quantum cryptography is believed to be unconditionally secure because its security is ensured by physical laws rather than computational complexity. According to spectrum characteristic, quantum information can be classified into two categories, namely discrete variables and continuous variables. Continuous-variable quantum protocols have gained much attention for their ability to transmit more information with lower cost. To verify the identities of different data sources in a quantum network, we propose a continuous-variable quantum homomorphic signature scheme. It is based on continuous-variable entanglement swapping and provides additive and subtractive homomorphism. Security analysis shows the proposed scheme is secure against replay, forgery and repudiation. Even under nonideal conditions, it supports effective verification within a certain verification threshold. 相似文献
International Journal of Control, Automation and Systems - This brief paper studies the stationary consensus of multiple Euler-Lagrange systems with nonlinear protocols. Two consensus protocols are... 相似文献
This paper reports the dynamic behaviour of a magnetically actuated floating liquid marble by analysing the oscillation of the marble. A liquid marble is a liquid droplet coated with hydrophobic powder. Magnetite particles inside the marble make it magnetic. The marble floats on a carrier liquid that contains aqueous glycerol of various concentrations. A permanent magnet located under the carrier liquid drives the floating marble with the initial velocity. Stopping the magnet abruptly causes the marble to oscillate around its final position for a few seconds. The oscillation was recorded and analysed using customised image processing and evaluation software. The damped harmonic motion model was then applied to the data and tested. Subsequently, critical parameters of the system such as the initial displacement, friction correction factor, the apparent frequency and the spring constant were determined and discussed. The simple experimental set-up and convenient theoretical approach allow us to characterise the marble motion under the influence of a magnet with good accuracy. 相似文献
A topology optimization methodology is proposed for the flexible multibody system undergoing both large overall motion and large deformation. The system of concern is modeled via the absolute nodal coordinate formulation. The equivalent static load method is employed to transform the topology optimization of the nonlinear dynamic response of the system into a static one, and evaluated to adapt to the absolute nodal coordinate formulation by splitting the elastic deformations of the flexible components from the overall motions of those components. During the static topology optimization, the material interface is implicitly described as the zero level set of a higher-dimensional scalar function. Then, the semi-implicit level set method with the additive operator splitting algorithm is employed to solve the corresponding Hamilton-Jacobi partial differential equation. In addition, the expert evaluation method of weights based on the grey theory is utilized to define the objective function, and a modified augmented Lagrange multiplier method is proposed to treat the inequality volume constraint so as to avoid the oscillation and drift of the volume. Finally, two numerical examples are provided to validate the proposed methodology. 相似文献
This study provides evidence supporting the use of the update strategies for the support vector regression (SVR) model. Firstly, the fitting and interpolation method (FIM) is presented to select SVR parameters, and three infill strategies are adopted to search for update points. Secondly, the infill strategy and parameter selection method are illustrated by test functions that illustrate their dependability. The distribution of update points, the sample density and the proportion of update points are discussed. Finally, the adaptive SVR surrogate model is applied to optimize the protective effect of railway wind barriers. The result shows that the parameter selection method has high stability. On the whole, the accuracy of the adaptive SVR model using a suitable infill strategy will be improved with an increasing proportion of update points if the final number of training points is identical. The optimization result shows an optimal porosity of 0.117 when the height of the railway wind barrier is 2.05 m (full scale).