首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   11篇
综合类   1篇
化学工业   15篇
金属工艺   2篇
机械仪表   6篇
建筑科学   3篇
能源动力   13篇
轻工业   11篇
水利工程   2篇
石油天然气   5篇
无线电   23篇
一般工业技术   30篇
冶金工业   14篇
自动化技术   13篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   8篇
  2015年   1篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
41.
In order to address the challenges associated with lithium–sulfur batteries with high energy densities, various approaches, including advanced designs of sulfur composites, electrolyte engineering, and functional separators, are lately introduced. However, most approaches are effective for sulfur cathodes with limited sulfur contents, i.e., <80 wt%, imposing a significant barrier in realizing high energy densities in practical cell settings. Here, elemental sulfur‐mediated synthesis of a perfluorinated covalent triazine framework (CTF) and its simultaneous chemical impregnation with elemental sulfur via SNAr chemistry are demonstrated. SNAr chemistry facilitates the dehalogenation and nucleophilic addition reactions of perfluoroaryl units with nucleophilic sulfur chains, achieving a high sulfur content of 86 wt% in the resulting CTF. The given sulfur‐impregnated CTF, named SF‐CTF, exhibits a specific capacity of 1138.2 mAh g?1 at 0.05C, initial Coulombic efficiency of 93.1%, and capacity retention of 81.6% after 300 cycles, by utilizing homogeneously distributed sulfur within the micropores and nitrogen atoms of triazine units offering high binding affinity toward lithium polysulfides.  相似文献   
42.
The introduction of hierarchical porosity into metal‐organic frameworks (MOFs) has been of considerable interest in gas separation and heterogeneous catalysis due to the efficient mass transfer kinetics through meso/macropores. Here, a facile, scalable approach is reported for the preparation of carbon nitride (CN) foams as structural templates with micrometer‐sized pores and high nitrogen content of 25.6 wt% by the fast carbonization of low‐cost melamine foam. The nitrogen functionalities of CN foam facilitate chemical anchoring and growth of ZIF‐8 (zeolitic imidazolate frameworks) crystals, which leads to the development of hierarchical porosity. The growth of ZIF‐8 crystals also renders CN foam, which is hydrophilic in nature, highly hydrophobic exhibiting 135° of water contact angle due to the enhanced surface roughness, thus creating a natural shield for the MOF crystals against water. The introduction of ZIF‐8 crystals onto the CN foam enables selective absorption of oils up to 58 wt% from water/oil mixtures and also facilitates the highly efficient conversion of CO2 to chloropropene carbonate in a quantitative yield with excellent product selectivity. Importantly, this present approach could be extended to the vast number of MOF structures, including the ones suffering from water instability, for the preparation of highly functional materials for various applications.  相似文献   
43.
Analysis of directional information flow patterns among different regions of the brain is important for investigating the relation between ECoG (electrocorticographic) and mental activity. The objective is to study and evaluate the information flow activity at different frequencies in the primary motor cortex. We employed Granger causality for capturing the future state of the propagation path and direction between recording electrode sites on the cerebral cortex. A grid covered the right motor cortex completely due to its size (approx. 8 cm × 8 cm) but grid area extends to the surrounding cortex areas. During the experiment, a subject was asked to imagine performing two activities: movement of the left small finger and/or movement of the tongue. The time series of the electrical brain activity was recorded during these trials using an 8 × 8 (0.016–300 Hz band with) ECoG platinum electrode grid, which was placed on the contralateral (right) motor cortex. For detection of information flow activity and communication frequencies among the electrodes, we have proposed a method based on following steps: (i) calculation of analytical time series such as amplitude and phase difference acquired from Hilbert transformation, (ii) selection of frequency having highest interdependence for the electrode pairs for the concerned time series over a sliding window in which we assumed time series were stationary, (iii) calculation of Granger causality values for each pair with selected frequency. The information flow (causal influence) activity and communication frequencies between the electrodes in grid were determined and shown successfully. It is supposed that information flow activity and communication frequencies between the electrodes in the grid are approximately the same for the same pattern. The successful employment of Granger causality and Hilbert transformation for the detection of the propagation path and direction of each component of ECoG among different sub-cortex areas were capable of determining the information flow (causal influence) activity and communication frequencies between the populations of neurons successfully.  相似文献   
44.
For original paper see Cui et al. (IEEE Antennas and Propagation Magazine, vol.42, no.2, p.17-27, 2000 April). Cui et al. proposed two numerical models to simulate an enhanced very early time electromagnetic (VETEM) prototype system, used for buried-object detection and environmental problems. In the first model, the transmitting and receiving loop antennas were accurately analyzed using the method of moments (MoM), and then conjugate gradient (CG) methods with the fast Fourier transform (FFT) were utilized to investigate the scattering from buried conducting plates. In the second model, two magnetic dipoles were used to replace the transmitter and receiver, because the working frequency for the VETEM system is usually low. Both the theory and formulation were correct, and the simulation results for the primary magnetic field and the reflected magnetic field were accurate. We have compared the simulation results for the magnetic field reflected by a wire-conductor mesh on the ground with measured data. They fit very well. However, the scattered magnetic fields in the simulation results were inaccurate, because we did not use a sufficient number of iterations in the CG-FFT algorithm when the frequency was very low  相似文献   
45.
The main purpose of this study is to understand the transient flux behaviors via membrane fouling in hybrid powdered activated carbon/microfiltration (PAC/MF) processes. Experiments were carried out for nickel solution at various surfactant adsorbent and membrane types and membrane pore sizes. Transient fluxes were modeled together using neural network (NN). A good agreement was obtained with correlation value of 0.986 and mean absolute error of 0.366 m3/m2 h respectively. In hybrid processes three discriminable phase behaviors for the flux were determined as fast [0-40s] slow [40-1000s] and low stable [1000-4500s]. Considerable losses in the flux were determined during the first and the second phases while the flux reached a partial steady-state in the third phase. In the first and the third phases participation of surfactant-adsorbed PACs to the cake layer and/or interaction of surfactants and PACs in the cake with each other were found to be predominant ways for the fouling. Whereas in the second phase the interaction of surfactants with both membrane and cake layer was appeared more influential on transient flux behavior.  相似文献   
46.
Fast and accurate temperature prediction for oblique cutting processes is still one of the most complex problems and challenges in the machining research community. For the first time in this article, a novel 3D temperature prediction model based on the finite difference approach for oblique cutting processes is presented. An elliptic structural grid generation method is implemented. Representing different oblique cutting geometries is straightforward now. Moreover, since the resulting equation system is algebraic, the model allows much faster calculations compared to available finite element method based machining temperature models. 3D oblique simulation results verify that temperatures are in good agreement with experimental results.  相似文献   
47.
Sulfide-based all-solid-state batteries (ASSBs) have been featured as promising alternatives to the current lithium-ion batteries (LIBs) mainly owing to their superior safety. Nevertheless, a solution-based scalable manufacturing scheme has not yet been established because of the incompatible polarity of the binder, solvent, and sulfide electrolyte during slurry preparation. This dilemma is overcome by subjecting the acrylate (co)polymeric binders to protection−deprotection chemistry. Protection by the tert-butyl group allows for homogeneous dispersion of the binder in the slurry based on a relatively less polar solvent, with subsequent heat-treatment during the drying process to cleave the tert-butyl group. This exposes the polar carboxylic acid groups, which are then able to engage in hydrogen bonding with the active cathode material, high-nickel layered oxide. Deprotection strengthens the electrode adhesion such that the strength equals that of commercial LIB electrodes, and the key electrochemical performance parameters are improved markedly in both half-cell and full-cell settings. The present study highlights the potential of sulfide-based ASSBs for scalable manufacturing and also provides insights that protection−deprotection chemistry can generally be used for various battery cells that suffer from polarity incompatibility among multiple electrode components.  相似文献   
48.
Despite their unparalleled theoretical capacity, lithium‐metal anodes suffer from well‐known indiscriminate dendrite growth and parasitic surface reactions. Conductive scaffolds with lithium uptake capacity are recently highlighted as promising lithium hosts, and carbon nanotubes (CNTs) are an ideal candidate for this purpose because of their capability of percolating a conductive network. However, CNT networks are prone to rupture easily due to a large tensile stress generated during lithium uptake–release cycles. Herein, CNT networks integrated with a polyrotaxane‐incorporated poly(acrylic acid) (PRPAA) binder via supramolecular interactions are reported, in which the ring‐sliding motion of the polyrotaxanes endows extraordinary stretchability and elasticity to the entire binder network. In comparison to a control sample with inelastic binder (i.e., poly(vinyl alcohol)), the CNT network with PRPAA binder can endure a large stress during repeated lithium uptake–release cycles, thereby enhancing the mechanical integrity of the corresponding electrode over battery cycling. As a result, the PRPAA‐incorporated CNT network exhibits substantially improved cyclability in lithium–copper asymmetric cells and full cells paired with olivine‐LiFePO4, indicating that high elasticity enabled by mechanically interlocked molecules such as polyrotaxanes can be a useful concept in advancing lithium‐metal batteries.  相似文献   
49.
Treatment of potato chips manufacturing wastewater by electrocoagulation   总被引:2,自引:0,他引:2  
M. Kobya  H. Hiz  E. Senturk  C. Aydiner  E. Demirbas   《Desalination》2006,190(1-3):201-211
Treatment of wastewater from potato chips manufacturing by electrocoagulation (EC) was investigated. Experiments were conducted to determine the optimum operating conditions such as electrode type, pH, current density and retention time. Aluminium and iron electrodes were used, and aluminium electrodes were found to be more suitable since it had a higher removal rate of COD, turbidity and suspended solids than the iron electrode. The removal efficiencies of COD and turbidity were high, being 60% and 98%, respectively, with retention time < 40 min. 0.05–1.75 kg (per kg COD removed) of dried sludge was removed. COD removal kinetics during EC process was described by a macro-kinetics model. Results from the kinetic studies showed that the kinetic data fit the second-order kinetic model well. The operating costs investigated in the present study were the energy cost of EC and the material cost due to the consumption of aluminium electrode. Operating costs were varied in the range of 0.48 to 5.42 $/m3 and 0.62 to 6.32 $/m3 wastewater treated at 20–300 A/m2 and 5–40 min, respectively. The energy consumption was 4 kWh/m3 for wastewater treated less than 8 min under typical operating conditions.  相似文献   
50.
Echinococcus granulosus and Echinococcus multilocularis cause liver hydatid disease. One of its most common complications is rupture into the bile ducts; however, penetration of a cyst into a vessel is a very rare complication. We detected a defect (2 x 1 cm) on the wall of the right hepatic vein, in addition to three distinctive ruptures into the bile ducts, in our case. For systemic hypotension due to a bleeding during operation and to repair the vessel wall defect, an urgent right thoracotomy followed by a radial phrenotomy was needed. We were able to reach the operation site easily and repaired the vessel wall with polypropylene suture. Because of the occurrence of these two complications together and the difficulties of the operation, we decided to report this case.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号