首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261593篇
  免费   2466篇
  国内免费   796篇
电工技术   5151篇
综合类   344篇
化学工业   37382篇
金属工艺   10258篇
机械仪表   8490篇
建筑科学   6127篇
矿业工程   1078篇
能源动力   6442篇
轻工业   22908篇
水利工程   2593篇
石油天然气   3958篇
武器工业   73篇
无线电   34849篇
一般工业技术   50224篇
冶金工业   46532篇
原子能技术   5423篇
自动化技术   23023篇
  2021年   2131篇
  2019年   2196篇
  2018年   3475篇
  2017年   3536篇
  2016年   3730篇
  2015年   2320篇
  2014年   4047篇
  2013年   11283篇
  2012年   6562篇
  2011年   8874篇
  2010年   6981篇
  2009年   7848篇
  2008年   8676篇
  2007年   8614篇
  2006年   7802篇
  2005年   7140篇
  2004年   6886篇
  2003年   6731篇
  2002年   6370篇
  2001年   6468篇
  2000年   6169篇
  1999年   6253篇
  1998年   14242篇
  1997年   10268篇
  1996年   8111篇
  1995年   6411篇
  1994年   5710篇
  1993年   5582篇
  1992年   4551篇
  1991年   4211篇
  1990年   4049篇
  1989年   3780篇
  1988年   3626篇
  1987年   3170篇
  1986年   3065篇
  1985年   3611篇
  1984年   3382篇
  1983年   3031篇
  1982年   2850篇
  1981年   2951篇
  1980年   2770篇
  1979年   2648篇
  1978年   2499篇
  1977年   2945篇
  1976年   3554篇
  1975年   2316篇
  1974年   2312篇
  1973年   2318篇
  1972年   1849篇
  1971年   1745篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaxMn1−xFe2O4) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology. Consequently, changes were obtained in the optical and magnetic properties that were studied through UV-Vis absorption and SQUID, respectively. XRD and Raman spectroscopy studies were carried out to assess the microstructural changes associated with stoichiometry of the particles, and the stability in physiological pH was studied through DLS. The nanoparticles displayed high values of magnetization and heating efficiency for several alternating magnetic field conditions, compatible with biological applications. Hereby, the employed method provides a promising strategy for the development of particles with adequate properties for magnetic hyperthermia applications, such as drug delivery and cancer therapy.  相似文献   
102.
Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.  相似文献   
103.
Modulation of lipid metabolism is a well-established cancer hallmark, and SCD1 has been recognized as a key enzyme in promoting cancer cell growth, including in glioblastoma (GBM), the deadliest brain tumor and a paradigm of cancer resistance. The central goal of this work was to identify, by MS, the phospholipidome alterations resulting from the silencing of SCD1 in human GBM cells, in order to implement an innovative therapy to fight GBM cell resistance. With this purpose, RNAi technology was employed, and low serum-containing medium was used to mimic nutrient deficiency conditions, at which SCD1 is overexpressed. Besides the expected increase in the saturated to unsaturated fatty acid ratio in SCD1 silenced-GBM cells, a striking increase in polyunsaturated chains, particularly in phosphatidylethanolamine and cardiolipin species, was noticed and tentatively correlated with an increase in autophagy (evidenced by the increase in LC3BII/I ratio). The contribution of autophagy to mitigate the impact of SCD1 silencing on GBM cell viability and growth, whose modest inhibition could be correlated with the maintenance of energetically associated mitochondria, was evidenced by using autophagy inhibitors. In conclusion, SCD1 silencing could constitute an important tool to halt GBM resistance to the available treatments, especially when coupled with a mitochondria disrupter chemotherapeutic.  相似文献   
104.
American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 μM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki’ inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).  相似文献   
105.
Preclinical and clinical studies have shown that traumatic hemorrhage (TH) induces early complement cascade activation, leading to inflammation-associated multiple-organ dysfunction syndrome (MODS). Several previous studies have demonstrated the beneficial effects of complement inhibition in anesthetized (unconscious) animal models of hemorrhage. Anesthetic agents profoundly affect the immune response, microcirculation response, and coagulation patterns and thereby may confound the TH research data acquired. However, no studies have addressed the effect of complement inhibition on inflammation-driven MODS in a conscious model of hemorrhage. This study investigated whether early administration of decay-accelerating factor (CD55/DAF, a complement C3/C5 inhibitor) alleviates hemorrhage-induced organ damage and how DAF modulates hemorrhage-induced organ damage. DAF was administered to unanesthetized male Sprague Dawley rats subjected to pressure-controlled hemorrhage followed by a prolonged (4 h) hypotensive resuscitation with or without lactated Ringer’s (LR). We assessed DAF effects on organ protection, tissue levels of complement synthesis and activation, T lymphocyte infiltration, fluid resuscitation requirements, and metabolic acidosis. Hemorrhage with (HR) or without (H) LR resuscitation resulted in significantly increased C3, C5a, and C5b-9 deposition in the lung and intestinal tissues. HR rats had significantly higher tissue levels of complement activation/deposition (particularly C5a and C5b-9 in the lung tissues), a higher but not significant amount of C3 and C5b-9 pulmonary microvascular deposition, and relatively severe injury in the lung and intestinal tissues compared to H rats. DAF treatment significantly reduced tissue C5b-9 formation and C3 deposition in the H or HR rats and decreased tissue levels of C5a and C3 mRNA in the HR rats. This treatment prevented the injury of these organs, improved metabolic acidosis, reduced fluid resuscitation requirements, and decreased T-cell infiltration in lung tissues. These findings suggest that DAF has the potential as an organ-protective adjuvant treatment for TH during prolonged damage control resuscitation.  相似文献   
106.
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.  相似文献   
107.
The extracellular circulating microRNA (miR)-200 regulates epithelial-mesenchymal transition and, thus, plays an essential role in the metastatic cascade and has shown itself to be a promising prognostic and predictive biomarker in metastatic breast cancer (MBC). Expression levels of the plasma miR-200 family were analyzed in relationship to systemic treatment, circulating tumor cells (CTC) count, progression-free survival (PFS), and overall survival (OS). Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429, and CTC status (CTC-positive ≥ 5 CTC/7.5 mL) was assessed in 47 patients at baseline (BL), after the first completed cycle of a new line of systemic therapy (1C), and upon the progression of disease (PD). MiR-200a, miR-200b, and miR-141 expression was reduced at 1C compared to BL. Upon PD, all miR-200s were upregulated compared to 1C. At all timepoints, the levels of miR-200s were elevated in CTC-positive versus CTC-negative patients. Further, heightened miR-200s expression and positive CTC status were associated with poorer OS at BL and 1C. In MBC patients, circulating miR-200 family members decreased after one cycle of a new line of systemic therapy, were elevated during PD, and were indicative of CTC status. Notably, increased levels of miR-200s and elevated CTC count correlated with poorer OS and PFS. As such, both are promising biomarkers for optimizing the clinical management of MBC.  相似文献   
108.
The HER2/neu signaling pathway is one of the most frequently mutated in human cancer. Although therapeutics targeting this pathway have good efficacy, cancer cells frequently develop resistance. The HER2 gene encodes the full-length HER2 protein, as well as smaller c-terminal fragments (CTFs), which have been shown to be a cause of resistance. Here, we show that HER2 CTFs, exclusive from the full-length HER2 protein, are generated via internal translation of the full-length HER2 mRNA and identify regions which are required for this mechanism to occur. These regions of the HER2 mRNA may present novel sites for therapeutic intervention via small molecules or antisense oligonucleotides (ASOs).  相似文献   
109.
Cancer is a set of diseases characterized by several hallmark properties, such as increased angiogenesis, proliferation, invasion, and metastasis. The increased angiogenic activity constantly supplies the tumors with nutrients and a plethora of cytokines to ensure cell survival. Along these cytokines is a newly discovered protein, called irisin, which is released into the circulation after physical exercise. Irisin is the product of fibronectin type III domain-containing protein 5 (FNDC5) proteolytic cleavage. Recently it has been the topic of investigation in several types of cancer. In this study, we conducted a systematic review and meta-analysis to investigate its implication in different types of cancer. Our results suggest that irisin expression is decreased in cancer patients, thus it can be used as a valid biomarker for the diagnosis of several types of cancer. In addition, our results indicate that irisin may have an important role in tumor progression and metastasis since it is involved in multiple signaling pathways that promote cell proliferation and migration.  相似文献   
110.
Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号