首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4990篇
  免费   201篇
  国内免费   3篇
电工技术   8篇
综合类   2篇
化学工业   387篇
金属工艺   44篇
机械仪表   49篇
建筑科学   51篇
矿业工程   1篇
能源动力   50篇
轻工业   482篇
水利工程   12篇
石油天然气   10篇
无线电   73篇
一般工业技术   318篇
冶金工业   3475篇
原子能技术   3篇
自动化技术   229篇
  2024年   7篇
  2023年   10篇
  2022年   16篇
  2021年   47篇
  2020年   38篇
  2019年   45篇
  2018年   111篇
  2017年   108篇
  2016年   88篇
  2015年   79篇
  2014年   89篇
  2013年   145篇
  2012年   110篇
  2011年   135篇
  2010年   89篇
  2009年   74篇
  2008年   85篇
  2007年   99篇
  2006年   45篇
  2005年   47篇
  2004年   44篇
  2003年   47篇
  2002年   26篇
  2001年   19篇
  2000年   22篇
  1999年   135篇
  1998年   1097篇
  1997年   654篇
  1996年   389篇
  1995年   226篇
  1994年   191篇
  1993年   200篇
  1992年   27篇
  1991年   57篇
  1990年   41篇
  1989年   48篇
  1988年   66篇
  1987年   54篇
  1986年   35篇
  1985年   25篇
  1984年   4篇
  1983年   8篇
  1982年   15篇
  1981年   15篇
  1980年   29篇
  1979年   2篇
  1978年   11篇
  1977年   69篇
  1976年   168篇
  1955年   1篇
排序方式: 共有5194条查询结果,搜索用时 15 毫秒
71.
Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 paired with either Cx43 or Cx50 were also well coupled, whereas Cx50 did not form functional channels with Cx43. We also examined the functional response of homotypic and heterotypic channels to transjunctional voltage and cytoplasmic acidification. We show that all lens connexins exhibited sensitivity to cytoplasmic acidification as well as to voltage, and that voltage-dependent closure of heterotypic channels for a given connexin was dramatically influenced by its partner connexins in the adjacent cell. Based on the observation that Cx43 can discriminate between Cx46 and Cx50, we investigated the molecular determinants that specify compatibility by constructing chimeric connexins from portions of Cx46 and Cx50 and testing them for their ability to form channels with Cx43. When the second extracellular (E2) domain in Cx46 was replaced with the E2 of Cx50, the resulting chimera could no longer form heterotypic channels with Cx43. A reciprocal chimera, where the E2 of Cx46 was inserted into Cx50, acquired the ability to functionally interact with Cx43. Together, these results demonstrate that formation of intercellular channels is a selective process dependent on the identity of the connexins expressed in adjacent cells, and that the second extracellular domain is a determinant of heterotypic compatibility between connexins.  相似文献   
72.
Purkinje cell toxicity is one of the characteristic features of the Gordon phenomenon, a syndrome manifested by ataxia, muscular rigidity, paralysis, and tremor that may lead to death (Gordon, 1933). Two members of the RNase superfamily found in humans, EDN (eosinophil-derived neurotoxin) and ECP (eosinophil cationic protein), cause the Gordon phenomenon when injected intraventricularly into guinea pigs or rabbits. We have found that another member of the RNase superfamily, an antitumor protein called onconase, isolated from Rana pipiens oocytes and early embryos, will also cause the Gordon phenomenon when injected into the cerebrospinal fluid of guinea pigs at a dose similar to that of EDN (LD50, 3-4 micrograms). Neurologic abnormalities of onconase-treated animals were indistinguishable from those of EDN-treated animals, and histology showed dramatic Purkinje cell loss in the brains of onconase-treated animals. The neurotoxic activity of onconase correlates with ribonuclease activity. Onconase modified by iodoacetic acid to eliminate 70% and 98% of the ribonuclease activity of the native enzyme displays a similar decrease in ability to cause the Gordon phenomenon. In contrast, the homologous bovine pancreatic RNase A injected intraventricularly at a dose 5000 times greater than the LD50 dose of EDN or onconase is not toxic and does not cause the Gordon phenomenon. A comparison of the RNase activities of EDN, onconase, and bovine pancreatic RNase A using three pancreatic RNA substrates demonstrates that onconase is orders of magnitude less active enzymatically than EDN and RNase A. Thus, another member of the RNase superfamily in addition to EDN and ECP can cause the Gordon phenomenon.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
73.
74.
1. Microstimulation is used to investigate how activity in the superior colliculus (SC) contributes to determining the properties of primate saccadic eye movements. The site of collicular stimulation, the duration of the stimulation train, and the frequency of the stimulation train are each varied to examine the relative contributions of the locus, duration, and level of collicular activity to determining saccade amplitude, direction, duration, and velocity. 2. For any given site of stimulation, a relationship between movement amplitude and train duration can be demonstrated. Movement amplitude is a monotonically increasing, but saturating, function of increasing train duration. The size of the largest movement is dictated by the site of stimulation. Within the range over which amplitude can be modulated, movement offset is linked to the offset of the stimulation train. As a result, each decrement or increment in train duration produces a corresponding decrement or increment in movement duration. 3. The peak velocity of an evoked movement is influenced by the frequency of stimulation; a higher frequency of stimulation produces a movement of higher velocity. 4. The effects of train duration and frequency can be traded to produce movements that have comparable amplitudes but different dynamic characteristics; high-velocity movements of short duration and low-velocity movements of long duration can be produced by stimulating with high-frequency, short-duration, and low-frequency, long-duration trains, respectively. Across stimulation frequencies, the amplitude of an evoked movement is best related to the total number of pulses in the stimulation train. 5. Because it is possible to compensate for reduced velocity by increasing the duration of the stimulation train, the same site-specific maximum amplitude can be attained with different frequencies of stimulation. 6. Small, but significant, changes in movement direction occur as a result of varying train duration or train frequency. 7. The latency to movement onset (i.e., interval from stimulation onset to movement onset) depends upon the frequency of stimulation. A higher frequency of stimulation produces a movement of shorter latency. 8. These data demonstrate that both the site of stimulation and the parameters of stimulation contribute to determining the properties of a movement evoked from the primate SC. In doing so, they contradict the results of early microstimulation studies that suggest that the properties of eye movements evoked from the primate SC are determined solely by the site of stimulation. The findings conflict with the traditional view of collicular function that suggests that the collicular motor representation is purely anatomic. Rather, these data support a revised view whereby the locus, duration, and level of collicular activity contribute to determining the properties of a primate saccadic eye movement. According to this view, independent information relating to desired displacement and saccade velocity are extracted from the spatiotemporal profile of collicular activity.  相似文献   
75.
The sympatholytic antihypertensive agent moxonidine, a centrally acting selective I1-imidazoline receptor modulator (putative agonist), may be beneficial in hypertensive patients with insulin resistance. In the present study, the effects of chronic in vivo moxonidine treatment of obese Zucker rats--a model of severe glucose intolerance, hyperinsulinemia and insulin resistance, and dyslipidemia--on whole-body glucose tolerance, plasma lipids, and insulin-stimulated skeletal muscle glucose transport activity (2-deoxyglucose uptake) were investigated. Moxonidine was administered by gavage for 21 consecutive days at 2, 6, or 10 mg/kg body weight. Body weights in control and moxonidine-treated groups were matched, except at the highest dose, at which final body weight was 17% lower in the moxonidine-treated animals compared with controls. The moxonidine-treated (6 and 10 mg/kg) obese animals had significantly lower fasting plasma levels of insulin (17% and 19%, respectively) and free fatty acids (36% and 28%, respectively), whereas plasma glucose was not altered. During an oral glucose tolerance test, the glucose response (area under the curve) was 47% and 67% lower, respectively, in the two highest moxonidine-treated obese groups. Moreover, glucose transport activity in the isolated epitrochlearis muscle stimulated by a maximally effective insulin dose (13.3 nmol/L) was 39% and 70% greater in the 6 and 10 mg/kg moxonidine-treated groups, respectively (P<.05 for all effects). No significant alterations in muscle glucose transport were elicited by 2 mg/kg moxonidine. These findings indicate that in the severely insulin-resistant and dyslipidemic obese Zucker rat, chronic in vivo treatment with moxonidine can significantly improve, in a dose-dependent manner, whole-body glucose tolerance, possibly as a result of enhanced insulin-stimulated skeletal muscle glucose transport activity and reduced circulating free fatty acids.  相似文献   
76.
PURPOSE: The phenoxyacetic acid, ethacrynic acid (ECA), has potential use in glaucoma therapy because it acts to increase aqueous outflow in vivo and in vitro. In human trabecular meshwork (HTM) cell culture, ECA acts to change cell shape and attachment, effects that have been correlated with microtubule (MT) alterations and chemical sulfhydryl (SH) reactivity. To further explore these actions, we evaluated two non-SH reactive phenoxyacetic acids, inadcrinone and ticrynafen, and the MT-disrupting drug vinblastine. METHODS: Excised bovine and porcine eyes were perfused and outflow facility measured. Calf pulmonary artery endothelial and HTM cells were grown in culture and cytoskeletal effects evaluated after drug treatment. RESULTS: Indacrinone, ticrynafen, and vinblastine all caused an increase in outflow facility. In contrast with ECA, the outflow effects of indacrinone and ticrynafen were not blocked by excess cysteine. Although indacrinone and ticrynafen produced changes in cell shape in vitro, the beta-tubulin staining pattern of treated cells was not altered. Vinblastine caused cell shape change and the expected MT disruption. CONCLUSIONS: Phenoxyacetic acids can increase aqueous outflow facility and alter HTM cell shape and attachment in vitro by a non-SH, non-MT mechanism (which is probably shared also by ECA). These findings suggest the possibility of a broader class of glaucoma drugs that may be directed at the HTM. An understanding of the cellular target for these drugs has implications both for potential glaucoma therapy and for the cytoskeletal mechanisms involved in normal outflow function.  相似文献   
77.
78.
A discussion is carried out about the experiences with the application of rimantadine and amantadine to patients with influenza. The basic general results consisted in the fact that 2 of the 74 patients treated had a high cure percent (> 68.0%) within the first 72 hours after using the drug. No new diseased were found among the 40 contacts to whom chemoprophylaxis was applied. There were only 3.9% adverse reactions among the total number of people treated with amantadine.  相似文献   
79.
This review aims to summarize the current state of research concerning the interaction of electrodes with liposomes suspended in solutions. Main attention is given to the complex mechanism of adhesion and spreading of liposomes on mercury electrodes. That mechanism can be studied with the help of chronoamperometry, where each adhesion-spreading event appears as a capacitive current spike. Integration of these spikes produces charge versus time transients that can be modeled and simulated, revealing the details of the multi-step adhesion-spreading process. Whereas the number of spikes per time mirrors the macro-kinetics, the analysis of the time behavior of each spike mirrors the micro-kinetics of each adhesion-spreading event. The reviewed studies show that this approach provides a new tool to study the properties of liposome membranes. The adhesion-spreading of liposomes on mercury electrodes has strong similarities to the process of vesicle fusion, which makes these studies a biomimetic model allowing one to deduce the effects of foreign molecules in bilayer membranes.  相似文献   
80.
Mitotic chromosomes of the freshwater snail Pomacea patula catemacensis (Baker 1922) were analyzed on gill tissue of specimens from the type locality (Lake Catemaco, Mexico). The diploid number of chromosomes is 2n = 26, including nine metacentric and four submetacentric pairs; therefore, the fundamental number is FN = 52, No sex chromosomes could be identified. The same chromosome number and morphology were already reported for P. flagellata, i.e., the other species of the genus living in Mexico. The basic haploid number for family Ampullariidae was reported to be n = 14 in the literature; so, its reduction to n = 13 is probably an apomorphy of the Mexican Pomacea snails. Lanistes bolteni, from Egypt, also shows n = 13, but its karyotype is much more asymmetrical, and seems to have evolved independently from P. flagellata and P. patula catemacensis. The nominotypical subspecies, P. patula patula (Reeve 1856), is a poorly known taxon, whose original locality is unknown. A taxonomical account is presented here, and a Mexican origin postulated as the most parsimonious hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号