首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2130篇
  免费   7篇
  国内免费   1篇
电工技术   8篇
化学工业   54篇
金属工艺   17篇
机械仪表   9篇
建筑科学   27篇
矿业工程   1篇
能源动力   3篇
轻工业   33篇
水利工程   7篇
无线电   46篇
一般工业技术   89篇
冶金工业   1776篇
原子能技术   10篇
自动化技术   58篇
  2021年   8篇
  2020年   3篇
  2018年   9篇
  2017年   10篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   22篇
  2012年   9篇
  2011年   14篇
  2010年   9篇
  2009年   6篇
  2008年   20篇
  2007年   20篇
  2006年   9篇
  2005年   11篇
  2004年   20篇
  2003年   19篇
  2002年   8篇
  2001年   10篇
  2000年   11篇
  1999年   52篇
  1998年   530篇
  1997年   321篇
  1996年   197篇
  1995年   118篇
  1994年   88篇
  1993年   124篇
  1992年   17篇
  1991年   22篇
  1990年   18篇
  1989年   33篇
  1988年   31篇
  1987年   27篇
  1986年   32篇
  1985年   29篇
  1984年   6篇
  1983年   6篇
  1982年   14篇
  1981年   19篇
  1980年   23篇
  1979年   11篇
  1978年   7篇
  1977年   53篇
  1976年   93篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
  1969年   3篇
  1966年   3篇
排序方式: 共有2138条查询结果,搜索用时 31 毫秒
71.
This paper describes the design, development, implementation, and assessment of a multimedia‐based learning module focused on biomechanics. The module is comprised of three challenges and is based on a model of learning and instruction known as the How People Learn (HPL) framework. Classroom assessment of the first challenge was undertaken to test the hypothesis that the HPL approach increases adaptive expertise in movement biomechanics. Student achievement was quantified using pre‐ and post‐test questionnaires designed to measure changes in three facets of adaptive expertise: factual and conceptual knowledge and transfer. The results showed that the HPL approach increased students' conceptual knowledge as well as their ability to transfer knowledge to new situations. These findings indicate that challenge‐based instruction, when combined with an intellectually engaging curriculum and principled instructional design, can accelerate the trajectory of novice to expert development in bioengineering education.  相似文献   
72.
Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.  相似文献   
73.
The influence of particle size and morphology on grain refinement in low stacking fault energy(SFE)alloys was studied by comparing the grain structures in single-and multi-phase Al-bronze(AB)alloys following equal channel angular pressing(ECAP)between 350 and 500℃.In particular,nickel aluminium bronze(NAB)was chosen as it contained both coarse and fine rounded particles,as well as a lamellar phase which evolved during ECAP.Grain refinement in the single-phase alloy was achieved through dynamic recrystallisation initiated at deformed twin boundaries.By contrast,different mechanisms were observed in the particle-containing NAB.Recrystallisation around the coarse κⅡ particles(~5 μm)was promoted through particle stimulated nucleation(PSN),whereas recrystallisation in the region of the fine κⅣ(~0.4μm)was delayed due to the activation of secondary slip.Grain refinement in areas of the lamellar κⅢ showed significant variation,depending on the lamellar orientation relative to the shear plane of ECAP.As the lamellae deformed,numerous high angle grain boundaries were generated between fragments and served as nucleation sites for recrystallisation,while PSN occurred around spheroidised lamellae.The spreading of the κⅢ particles by ECAP then enhanced the total area of recrystallised grains.  相似文献   
74.
Co-doped ZnO-based ceramics using Al, Ti, and Mg ions in different ratios were synthesized with the objective to investigate the doping effects on the crystalline features, microstructure and the electrical behavior. For Al and Ti doping, a coexistence of crystalline phases was shown with a major wurtzite ZnO structure and secondary spinel phases (ZnAl2O4, Zn2TiO4, or ZnaTibAlcOd), while Mg doping did not alter significantly the structural features of the wurtzite ZnO phase. The electrical behavior induced by Al, Ti, and Mg co-doping in different ratios was investigated using Raman, electron paramagnetic resonance (EPR) and 27Al and 67Zn solid-state nuclear magnetic resonance (NMR). Al doping induces a high electrical conductivity compared to other doping elements. In particular, shallow donors from Zni-AlZn defect structures are inferred from the characteristic NMR signal at about 185 ppm; that is, quite far from the usual oxygen coordinated Al. The Knight shift effect emanating from a highly conducting Al-doped ZnO ceramics was considered as the origin of this observation. Oppositely, as Ti doping leads to the formation of secondary spinel phases, EPR analysis shows a high concentration of Ti3+ ions which limit the electrical conductivity. The correlation between the structural features at the local order, the involved defects and the electrical behavior as function of the doping process are discussed.  相似文献   
75.
76.
77.
The rate-dependent mechanical properties of Sn3.8Ag0.7Cu (SAC387) Pb-free alloy and Sn-Pb eutectic alloy were investigated in this study under pure shearing and biaxial stress conditions with thin-walled specimens using a servo-controlled tension-torsion material testing system. The pure shearing tests were conducted at strain rates between 6.7 × 10−7 and 1.3 × 10−1/sec. In addition, axial tensile stresses were superimposed onto the shearing samples to examine the effects of biaxial stress conditions on the yielding and on post-yielding plastic flow of the solder alloys. Strain hardening is observed for the Pb-free alloy at all the tested strain rates, while strain softening happens with the Sn-Pb eutectic solder at low strain rates. Special tests were also conducted for sudden strain-rates changes and stress relaxation for the purpose to develop a viscoplastic model to simulate time-dependent multiaxial deformation and to assess damage and fatigue life of general solder interconnections.  相似文献   
78.
As part of the Lifecycle Innovative Financing Evaluation initiative, the San Ysidro Bridge along U.S. Route 550 will be monitored throughout a 10?year warranty period to determine changes in deflection, stiffness, and load-carrying capacity. This paper discusses an initial live-load test on the San Ysidro Bridge as well as a subsequent load test on a full-scale single lane test bridge. The two load tests in conjunction with finite element modeling were used to determine the load rating for both shear and moment of the San Ysidro Bridge. This load rating was then compared with the load rating using the distribution factors from the American Association of State Highway and Transportation Officials (AASHTO) Standard and Load and Resistance Factor Design Specifications. According to both AASHTO specifications, the interior girder shear controlled the load rating of the San Ysidro Bridge. Using the finite element modeling scheme of frame and shell elements the interior girder moment was found to control the design. This load rating will be used as a baseline for comparison with future load ratings throughout the warranty period.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号