首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   13篇
电工技术   16篇
综合类   6篇
化学工业   253篇
金属工艺   6篇
机械仪表   40篇
建筑科学   23篇
能源动力   24篇
轻工业   95篇
水利工程   5篇
石油天然气   4篇
无线电   42篇
一般工业技术   97篇
冶金工业   22篇
原子能技术   11篇
自动化技术   187篇
  2024年   3篇
  2023年   13篇
  2022年   59篇
  2021年   60篇
  2020年   28篇
  2019年   30篇
  2018年   21篇
  2017年   24篇
  2016年   38篇
  2015年   17篇
  2014年   31篇
  2013年   59篇
  2012年   60篇
  2011年   48篇
  2010年   40篇
  2009年   32篇
  2008年   30篇
  2007年   30篇
  2006年   23篇
  2005年   25篇
  2004年   14篇
  2003年   23篇
  2002年   21篇
  2001年   10篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   19篇
  1996年   9篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
771.
    
The development of biomedical systems with antimicrobial and antibiofilm properties is a difficult medical task for preventing bacterial adhesion and growth on implanted devices. In this work, a fibrillar scaffold was produced by electrospinning a polymeric organic dispersion of polylactic acid (PLA) and poly(α,β-(N-(3,4-dihydroxyphenethyl)-L-aspartamide-co-α,β-N-(2-hydroxyethyl)-L-aspartamide) (PDAEA). The pendant catechol groups of PDAEA were used to reduce silver ions in situ and produce silver nanoparticles onto the surface of the electrospun fibers through a simple and reproducible procedure. The morphological and physicochemical characterization of the obtained scaffolds were studied and compared with virgin PLA electrospun sample. Antibiofilm properties against Pseudomonas aeruginosa, used as a biofilm-forming pathogen model, were also studied on planar and tubular scaffolds. These last were fabricated as a proof of concept to demonstrate the possibility to obtain antimicrobial devices with different shape and dimension potentially useful for different biomedical applications. The results suggest a promising approach for the development of antimicrobial and antibiofilm scaffolds.  相似文献   
772.
    
Metal complexes play a crucial role in pharmaceutical sciences owing to their wide and significant activities. Schiff bases (SBs) are multifaceted pharmacophores capable of forming chelating complexes with various metals in different oxidation states. Complexes with SBs are extensively studied for their numerous advantages, including low cost and simple synthetic strategies. They have been reported to possess a variety of biological activities, including antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic ones. This review summarizes the most recent studies on the antimicrobial and antiproliferative activities of SBs-metal complexes. Moreover, recent studies regarding mononuclear and binuclear complexes with SBs are described, including antioxidant, antidiabetic, antimalarial, antileishmanial, anti-Alzheimer, and catecholase activities.  相似文献   
773.
    
Increased expression of the urokinase-type plasminogen activator (uPA) system is associated with tumor invasion, neo-angiogenesis, and metastatic spread, and has been shown to positively correlate with a poor prognosis in several cancer types, including thyroid carcinomas. In recent years, several uPA inhibitors were found to have anticancer effects in preclinical studies and in some phase II clinical trials, which prompted us to evaluate uPA as a potential therapeutic target for the treatment of patients affected by the most aggressive form of thyroid cancer, the anaplastic thyroid carcinoma (ATC). In this study, we evaluated the in vitro and in vivo effects of WX-340, a highly specific and selective uPA inhibitor, on two ATC-derived cell lines, CAL-62 and BHT-101. The results obtained indicated that WX-340 was able to reduce cell adhesion and invasiveness in a dose-dependent manner in both cell lines. In addition, WX-340 increased uPA receptor (uPAR) protein levels without affecting its plasma membrane concentration. However, this compound was unable to significantly reduce ATC growth in a xenograft model, indicating that uPA inhibition alone may not have the expected therapeutic effects.  相似文献   
774.
    
The progression of nonalcoholic fatty liver disease (NAFLD) is associated with alterations of the gut–liver axis. The activation of toll-like receptor 4 (TLR4) pathways by endotoxins, such as lipopolysaccharide (LPS), contributes to liver injury. The aim of the present study was to evaluate the possible beneficial effects of a calcium-sulphate-bicarbonate natural mineral water on the gut–liver axis by evaluating liver and terminal ileum histopathology in a murine model of NAFLD. NAFLD was induced in mice by administrating a methionine-choline-deficient (MCD) diet. The following experimental groups were evaluated: controls (N = 10); MCD+Tap water (MCD; N = 10); MCD+Calcium-sulphate-bicarbonate water (MCD/Wcsb; N = 10). Mice were euthanised after 4 and 8 weeks. Liver and terminal ileum samples were collected. Samples were studied by histomorphology, immunohistochemistry, and immunofluorescence. In mice subjected to the MCD diet, treatment with mineral water improved inflammation and fibrosis, and was associated with a reduced number of activated hepatic stellate cells when compared to MCD mice not treated with mineral water. Moreover, MCD/Wcsb mice showed lower liver LPS localization and less activation of TLR4 pathways compared to the MCD. Finally, Wcsb treatment was associated with improved histopathology and higher occludin positivity in intestinal mucosa. In conclusion, calcium-sulphate-bicarbonate water may exert modulatory activity on the gut–liver axis in MCD mice, suggesting potential beneficial effects on NAFLD.  相似文献   
775.
    
Spinal cord injury (SCI) is a devastating condition with a significant medical and socioeconomic impact. To date, no effective treatment is available that can enable neuronal regeneration and recovery of function at the damaged level. This is thought to be due to scar formation, axonal degeneration and a strong inflammatory response inducing a loss of neurons followed by a cascade of events that leads to further spinal cord damage. Many experimental studies demonstrate the therapeutic effect of stem cells in SCI due to their ability to differentiate into neuronal cells and release neurotrophic factors. Therefore, it appears to be a valid strategy to use in the field of regenerative medicine. This review aims to provide an up-to-date summary of the current research status, challenges, and future directions for stem cell therapy in SCI models, providing an overview of this constantly evolving and promising field.  相似文献   
776.
    
Trabectedin is used for the treatment of advanced soft tissue sarcomas (STSs). In this study, we evaluated if trabectedin could enhance the efficacy of irradiation (IR) by increasing the intrinsic cell radiosensitivity and modulating tumor micro-environment in fibrosarcoma (HS 93.T), leiomyosarcoma (HS5.T), liposarcoma (SW872), and rhabdomyosarcoma (RD) cell lines. A significant reduction in cell surviving fraction (SF) following trabectedin + IR compared to IR alone was observed in liposarcoma and leiomyosarcoma (enhancement ratio at 50%, ER50: 1.45 and 2.35, respectively), whereas an additive effect was shown in rhabdomyosarcoma and fibrosarcoma. Invasive cells’ fraction significantly decreased following trabectedin ± IR compared to IR alone. Differences in cell cycle distribution were observed in leiomyosarcoma and rhabdomyosarcoma treated with trabectedin + IR. In all STS lines, trabectedin + IR resulted in a significantly higher number of γ-H2AX (histone H2AX) foci 30 min compared to the control, trabectedin, or IR alone. Expression of ATM, RAD50, Ang-2, VEGF, and PD-L1 was not significantly altered following trabectedin + IR. In conclusion, trabectedin radiosensitizes STS cells by affecting SF (particularly in leiomyosarcoma and liposarcoma), invasiveness, cell cycle distribution, and γ-H2AX foci formation. Conversely, no synergistic effect was observed on DNA damage repair, neoangiogenesis, and immune system.  相似文献   
777.
778.
779.
    
File sharing is one of the leading Internet applications of P2P technology. Given the high number of computer nodes involved in peer‐to‐peer networks, reducing their aggregate energy consumption is an important challenge to be faced. In this paper, we show how the sleep‐and‐wake energy saving approach can be exploited to reduce energy consumption in BitTorrent, one of the most popular file sharing peer‐to‐peer networks. We describe BitTorrentSW, a sleep‐and‐wake approach for BitTorrent networks that allows seeders (ie, peers that hold complete files) to cyclically switch between wake and sleep modes to save energy while ensuring good file sharing performance. The decision to switch to sleep mode is taken independently by each seeder based on local information about the composition of the peer‐to‐peer network. BitTorrentSW has been evaluated through PeerSim using real BitTorrent traces. The simulation results show that, in all the configurations under analysis, the percentage of energy saved by BitTorrentSW is much higher than the percentage of increase in download time. For instance, in a network with 50% of seeders, about 20% of energy is saved using BitTorrentSW, with an increase of only 7% of the average time needed to complete a file download compared to a standard BitTorrent network in which all seeders are always powered on.  相似文献   
780.
    
The stress triaxiality effect on the strain required for void nucleation by particle‐matrix debonding has been investigated by means of micromechanical modelling. A unit‐cell model considering an elastic spherical particle embedded in an elastic‐plastic matrix was developed to the purpose. Particle‐matrix decohesion was simulated through the progressive failure of a cohesive interface. It has been shown that the parameters of matrix‐particle cohesive interface are correlated with macroscopic material properties. Here, a simple relationship for the maximum cohesive opening at interface failure as a function of material fracture toughness and yield stress has been derived. Results seem to confirm that, increasing stress triaxiality, the strain at which void nucleation is predicted to occur decreases exponentially in a similar way as for fracture strain. This result has substantial implications in modelling of ductile damage because it indicates that if the stress triaxiality is high enough, ductile fracture can occur at plastic strain lower than that necessary to nucleate damage for moderate or low stress triaxiality regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号