首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6045篇
  免费   271篇
  国内免费   13篇
电工技术   44篇
综合类   1篇
化学工业   1068篇
金属工艺   106篇
机械仪表   119篇
建筑科学   88篇
矿业工程   7篇
能源动力   120篇
轻工业   869篇
水利工程   56篇
石油天然气   18篇
无线电   221篇
一般工业技术   655篇
冶金工业   2409篇
原子能技术   26篇
自动化技术   522篇
  2024年   22篇
  2023年   45篇
  2022年   146篇
  2021年   234篇
  2020年   146篇
  2019年   194篇
  2018年   198篇
  2017年   207篇
  2016年   175篇
  2015年   134篇
  2014年   173篇
  2013年   267篇
  2012年   262篇
  2011年   270篇
  2010年   183篇
  2009年   215篇
  2008年   172篇
  2007年   150篇
  2006年   119篇
  2005年   101篇
  2004年   72篇
  2003年   73篇
  2002年   60篇
  2001年   53篇
  2000年   53篇
  1999年   128篇
  1998年   785篇
  1997年   425篇
  1996年   291篇
  1995年   185篇
  1994年   158篇
  1993年   136篇
  1992年   35篇
  1991年   26篇
  1990年   22篇
  1989年   45篇
  1988年   31篇
  1987年   32篇
  1986年   32篇
  1985年   26篇
  1984年   10篇
  1983年   6篇
  1982年   9篇
  1981年   18篇
  1980年   17篇
  1979年   4篇
  1978年   4篇
  1977年   65篇
  1976年   102篇
  1975年   5篇
排序方式: 共有6329条查询结果,搜索用时 15 毫秒
71.
Plasmonics is a fast developing research area with a great potential for practical applications. However, the implementation of plasmonic devices requires low cost methodologies for the fabrication of organized metallic nanostructures that covers a relative large area (~1 cm2). Here the patterning of periodic arrays of nanoholes (PANHs) in gold films by using a combination of interference lithography, metal deposition, and lift off is reported. The setup allows the fabrication of periodic nanostructures with hole diameters ranging from 110 to 1000 nm, for 450 and 1800 nm of periodicity, respectively. The large areas plasmonic substrates consist of 2 cm × 2 cm gold films homogeneously covered by nanoholes and gold films patterned with a regular microarray of 200 μm diameter circular patches of PANHs. The microarray format is used for surface plasmon resonance (SPR) imaging and its potential for applications in multiplex biosensing is demonstrated. The gold films homogeneously covered by nanoholes are useful as electrodes in a thin layer organic photovoltaic. This is first example of a large area plasmonic solar cell with organized nanostructures. The fabrication approach reported here is a good candidate for the industrial‐scale production of metallic substrates for plasmonic applications in photovoltaics and biosensing.  相似文献   
72.
Chemistry and processing have to be judiciously combined to structure the membranes at various length scales to achieve efficient properties for polymer electrolyte membrane fuel cell to make it competitive for transport. Characterizing the proton transport at various length and space scales and understanding the interplays between the nanostructuration, the confinement effect, the interactions, and connectivity are consequently needed. The goal here is to study the proton transport in multiscale, electrospun hybrid membranes (EHMs) at length scales ranging from molecular to macroscopic by using complementary techniques, i.e., electrochemical impedance spectroscopy, pulsed field gradient‐NMR spectroscopy, and quasielastic neutron scattering. Highly conductive hybrid membranes (EHMs) are produced and their performances are rationalized taken into account the balances existing between local interaction driven mobility and large‐scale connectivity effects. It is found that the water diffusion coefficient can be locally decreased (2 × 10?6 cm2 s?1) due to weak interactions with the silica network, but the macroscopic diffusion coefficient is still high (9.6 × 10?6 cm2 s?1). These results highlight that EHMs have slow dynamics at the local scale without being detrimental for long‐range proton transport. This is possible through the nanostructuration of the membranes, controlled via processing and chemistry.  相似文献   
73.
74.
75.
Exogenous neuroprotective protein neuroglobin (Ngb) cannot cross the blood–brain barrier. To overcome this difficulty, we synthesized hyaluronate nanoparticles (NPs), able to deliver Ngb into the brain in an animal model of stroke (MCAO). These NPs effectively reached neurons, and were microscopically identified after 24 h of reperfusion. Compared to MCAO non-treated animals, those treated with Ngb-NPs showed survival rates up to 50% higher, and better neurological scores. Tissue damage improved with the treatment, but no changes in the infarct volume or in the oxidative/nitrosative values were detected. A proteomics approach (p-value < 0.02; fold change = 0.05) in the infarcted areas showed a total of 219 proteins that significantly changed their expression after stroke and treatment with Ngb-NPs. Of special interest, are proteins such as FBXO7 and NTRK2, which were downexpressed in stroke, but overexpressed after treatment with Ngb-NPs; and ATX2L, which was overexpressed only under the effect of Ngb. Interestingly, the proteins affected by the treatment with Ngb were involved in mitochondrial function and cell death, endocytosis, protein metabolism, cytoskeletal remodeling, or synaptic function, and in regenerative processes, such as dendritogenesis, neuritogenesis, or sinaptogenesis. Consequently, our pharmaceutical preparation may open new therapeutic scopes for stroke and possibly for other neurodegenerative pathologies.  相似文献   
76.
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.  相似文献   
77.
Photobacteriosis is a septicaemic bacterial disease affecting several marine species around the globe, resulting in significant economic losses. Although many studies have been performed related to the pathogen virulence and resistance factors, information regarding the host defence mechanisms activated once an infection takes place is still scarce. The present study was designed to understand innate immune responses of farmed juvenile gilthead seabream (Sparus aurata) after Photobacterium damselae subsp. piscicida (Phdp) infection. Therefore, two groups of seabream juveniles were intraperitoneally injected with 100 µL of PBS (placebo) or 100 µL of exponentially growing Phdp (1 × 106 CFU/mL; infected). The blood, plasma, liver, and head kidney of six fish from each treatment were sampled immediately before infection and 3, 6, 9, 24 and 48 h after infection for the broad screening of fish immune and oxidative stress responses. Infected animals presented marked anaemia, neutrophilia and monocytosis, conditions that are correlated with an increased expression of genes related to inflammation and phagocytic activity. Similar studies with different fish species and bacteria can be useful for the definition of health biomarkers that might help fish farmers to prevent the occurrence of such diseases.  相似文献   
78.
Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 μg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats.  相似文献   
79.
Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.  相似文献   
80.
Aluminum (Al) is one of the most abundant elements on Earth, and its high extraction rate and industrial use make human exposure very common. As Al may be a human toxicant, it is important to investigate the effects of Al exposure, mainly at low doses and for prolonged periods, by simulating human exposure. This work aimed to study the effects of low-dose exposure to chloride aluminum (AlCl3) on the oxidative biochemistry, proteomic profile, and morphology of the major salivary glands. Wistar male rats were exposed to 8.3 mg/kg/day of AlCl3 via intragastric gavage for 60 days. Then, the parotid and submandibular glands were subjected to biochemical assays, proteomic evaluation, and histological analysis. Al caused oxidative imbalance in both salivary glands. Dysregulation of protein expression, mainly of those related to cytoarchitecture, energy metabolism and glandular function, was detected in both salivary glands. Al also promoted histological alterations, such as acinar atrophy and an increase in parenchymal tissue. Prolonged exposure to Al, even at low doses, was able to modulate molecular alterations associated with morphological impairments in the salivary glands of rats. From this perspective, prolonged Al exposure may be a risk to exposed populations and their oral health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号