首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
化学工业   24篇
建筑科学   1篇
能源动力   3篇
轻工业   20篇
石油天然气   1篇
无线电   6篇
一般工业技术   10篇
冶金工业   3篇
自动化技术   15篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   9篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有83条查询结果,搜索用时 18 毫秒
31.
This paper presents a statistical analysis of all reported incidents in the Greek petrochemical industry from 1997 to 2003. A comprehensive database has been developed to include industrial accidents (fires, explosions and substance releases), occupational accidents, incidents without significant consequences and near misses. The study concentrates on identifying and analyzing the causal factors related to different consequences of incidents, in particular, injury, absence from work and material damage. Methods of analysis include logistic regression with one of these consequences as dependent variable. The causal factors that are considered cover four major categories related to organizational issues, equipment malfunctions, human errors (of commission or omission) and external causes. Further analyses aim to confirm the value of recording near misses by comparing their causal factors with those of more serious incidents. The statistical analysis highlights the connection between the human factor and the underlying causes of accidents or incidents.  相似文献   
32.
Increased soil salinity, and therefore accumulation of ions, is one of the major abiotic stresses of cultivated plants that negatively affect their growth and yield. Among Medicago species, only Medicago truncatula, which is a model plant, has been extensively studied, while research regarding salinity responses of two important forage legumes of Medicago sativa (M. sativa) and Medicago arborea (M. arborea) has been limited. In the present work, differences between M. arborea, M. sativa and their hybrid Alborea were studied regarding growth parameters and metabolomic responses. The entries were subjected to three different treatments: (1) no NaCl application (control plants), (2) continuous application of 100 mM NaCl (acute stress) and (3) gradual application of NaCl at concentrations of 50-75-150 mM by increasing NaCl concentration every 10 days. According to the results, M. arborea maintained steady growth in all three treatments and appeared to be more resistant to salinity. Furthermore, results clearly demonstrated that M. arborea presented a different metabolic profile from that of M. sativa and their hybrid. In general, it was found that under acute and gradual stress, M. sativa overexpressed saponins in the shoots while M. arborea overexpressed saponins in the roots, which is the part of the plant where most of the saponins are produced and overexpressed. Alborea did not perform well, as more metabolites were downregulated than upregulated when subjected to salinity stress. Finally, saponins and hydroxycinnamic acids were key players of increased salinity tolerance.  相似文献   
33.
As is known, HOXB9 is an important factor affecting disease progression and overall survival (OS) in cancer. However, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the role of HOXB9 in CRC progression and its association with OS in colorectal liver metastases (CRLM). We analysed differential HOXB9 expression in CRC using the Tissue Cancer Genome Atlas database (TCGA). We modulated HOXB9 expression in vitro to assess its impact on cell proliferation and epithelial-mesenchymal transition (EMT). Lastly, we explored the association of HOXB9 protein expression with OS, using an institutional patient cohort (n = 110) who underwent liver resection for CRLM. Furthermore, HOXB9 was upregulated in TCGA-CRC (n = 644) vs. normal tissue (n = 51) and its expression levels were elevated in KRAS mutations (p < 0.0001). In vitro, HOXB9 overexpression increased cell proliferation (p < 0.001) and upregulated the mRNA expression of EMT markers (VIM, CDH2, ZEB1, ZEB2, SNAI1 and SNAI2) while downregulated CDH1, (p < 0.05 for all comparisons). Conversely, HOXB9 silencing disrupted cell growth (p < 0.0001). High HOXB9 expression (HR = 3.82, 95% CI: 1.59–9.2, p = 0.003) was independently associated with worse OS in CRLM-HOXB9-expressing patients after liver resection. In conclusion, HOXB9 may be associated with worse OS in CRLM and may promote CRC progression, whereas HOXB9 silencing may inhibit CRC growth.  相似文献   
34.
Limitations associated with the use of linear biodegradable polyesters in the preparation of anticancer nano-based drug delivery systems (nanoDDS) have turned scientific attention to the utilization of branched-chain (co-)polymers. In this context, the present study evaluates the use of novel branched poly(ε-caprolactone) (PCL)-based copolymers of different architectures for the preparation of anticancer nanoparticle (NP)-based formulations, using paclitaxel (PTX) as a model drug. Specifically, three PCL-polyol branched polyesters, namely, a three-arm copolymer based on glycerol (PCL-GLY), a four-arm copolymer based on pentaerythritol (PCL-PE), and a five-arm copolymer based on xylitol (PCL-XYL), were synthesized via ring-opening polymerization and characterized by proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), intrinsic viscosity, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy and cytotoxicity. Then, PTX-loaded NPs were prepared by an oil-in-water emulsion. The size of the obtained NPs varied from 200 to 300 nm, while the drug was dispersed in crystalline form in all formulations. High encapsulation efficiency and high yields were obtained in all cases, while FTIR analysis showed no molecular drug polymer. Finally, in vitro drug release studies showed that the studied nanocarriers significantly enhanced the dissolution rate and extent of the drug.  相似文献   
35.
Short-chain-branched-polyethylene (SCB-PE) is extensively used in domestic hot and cold piping systems. SCB-PE nanocomposites using graphene nanoplatelets (GNPs) as a filler, were prepared in this work. The effect of ball-milling as a premixing technique prior to melt-mixing, on the crystallization and the nanomechanical properties of the composites has been studied. Two sets of SCB-PE/GNPs nanocomposites with various filler loadings were prepared; one with and one without the ball-milling step. The dispersion of the filler was evaluated by optical microscopy while the crystallization process was studied using differential scanning calorimetry. The nonisothermal crystallization's experimental data were analyzed using various methods. The materials' nanomechanical behavior was investigated by conducting nanoindentation tests. A finite element analysis process was developed to extract the composites' stress–strain behavior. The composites prepared with ball-milling presented improved dispersion of GNPs in the SCB-PE matrix, which affected the crystallization, while nanoindentation tests showed significantly enhanced mechanical properties.  相似文献   
36.
Polymer derived SiOC and SiCN ceramics (PDCs) are interesting candidates for additive manufacturing techniques to develop micro sized ceramics with the highest precision. PDCs are obtained by the pyrolysis of crosslinked polymer precursors at elevated temperatures. Within this work, we are investigating PDC SiOC ceramic monoliths synthesized from liquid polysiloxane precursor crosslinked with divinylbenzene for fabrication of conductive electromechanical devices. Microstructure of the final ceramics was found to be greatly influenced by the pyrolysis temperature. Crystallization in SiOC ceramics starts above 1200?°C due to the onset of carbothermal reduction leading to the formation of SiC and SiO2 rich phases. Microstructural characterisation using ex-situ X-ray diffraction, FTIR, Raman spectra and microscopy imaging confirms the formation of nano crystalline SiC ceramics at 1400?°C. The electrical and mechanical properties of the ceramics are found to be significantly influenced by the phase separation with samples becoming more electrically conducting but with reduced strength at 1400?°C. A maximum electrical conductivity of 101 S?cm?1 is observed for the 1400?°C samples due to enhancement in the ordering of the free carbon network. Mechanical testing using the ball on 3 balls (B3B) method revealed a characteristic flexural strength of 922?MPa for 1000?°C amorphous samples and at a higher pyrolysis temperature, materials become weaker with reduced strength.  相似文献   
37.
In 2017, an outbreak regarding the release to the market of contaminated eggs with fipronil, alerted all EU authorities as to monitor and take relevant measures. In Greece, a total of 40 samples of poultry fat and eggs taken from the primary production (poultry farms) were analyzed, as to investigate the occurrence of fipronil residues. For the analysis of the samples, a simple and cost effective sample preparation procedure using freezing as the cleanup step was used, in conjunction with liquid chromatography with electrospray ionization-tandem mass spectrometry, to identify and quantify fipronil and its sulfone metabolite in poultry fat and eggs. Mean recoveries in the range 69.3–120.3% with all relative standard deviations <18.8% were obtained for both analytes and both matrices. The limit of quantification of the method was set at 0.0025 mg/kg−1. The matrix effect was evaluated and the quantification of the analytes was conducted using matrix matched calibration standards.  相似文献   
38.
39.
The crystallinity of gold nanoparticles during coalescence or sintering is investigated by molecular dynamics. The method is validated by the attainment of the Au melting temperature that increases with increasing particle size approaching the Au melting point. The morphology and crystal dynamics of nanoparticles of (un)equal size during sintering are elucidated. The characteristic sintering time of particle pairs is determined by tracing their surface area evolution during coalescence. The crystallinity is quantified by the disorder variable indicating the system's degree of disorder. The atoms at the grain boundaries are amorphous, especially during particle adhesion and during sintering when grains of different orientation are formed. Initial grain orientation affects final particle morphology leading to exposure of different crystal surfaces that can affect the performance of Au nanoparticles (e.g., catalytic efficiency). Coalescence between crystalline and amorphous nanoparticles of different size results in polycrystalline particles of increasing crystallinity with time and temperature. Crystallinity affects the sintering rate and mechanism. Such simulations of free‐standing Au nanoparticle coalescence are relevant also to Au nanoparticles on supports that do not exhibit strong affinity or strong metal support interactions. © 2015 American Institute of Chemical Engineers AIChE J, 62: 589–598, 2016  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号