首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8041篇
  免费   153篇
  国内免费   10篇
电工技术   87篇
综合类   2篇
化学工业   1890篇
金属工艺   174篇
机械仪表   145篇
建筑科学   283篇
矿业工程   13篇
能源动力   270篇
轻工业   735篇
水利工程   86篇
石油天然气   37篇
武器工业   6篇
无线电   592篇
一般工业技术   1604篇
冶金工业   833篇
原子能技术   44篇
自动化技术   1403篇
  2024年   67篇
  2023年   66篇
  2022年   124篇
  2021年   175篇
  2020年   190篇
  2019年   158篇
  2018年   181篇
  2017年   198篇
  2016年   263篇
  2015年   175篇
  2014年   275篇
  2013年   607篇
  2012年   450篇
  2011年   546篇
  2010年   369篇
  2009年   371篇
  2008年   505篇
  2007年   427篇
  2006年   371篇
  2005年   304篇
  2004年   282篇
  2003年   241篇
  2002年   202篇
  2001年   123篇
  2000年   103篇
  1999年   114篇
  1998年   118篇
  1997年   104篇
  1996年   102篇
  1995年   94篇
  1994年   110篇
  1993年   78篇
  1992年   64篇
  1991年   51篇
  1990年   46篇
  1989年   63篇
  1988年   47篇
  1987年   24篇
  1986年   31篇
  1985年   40篇
  1984年   40篇
  1983年   26篇
  1982年   26篇
  1981年   41篇
  1980年   24篇
  1979年   22篇
  1978年   24篇
  1977年   14篇
  1974年   21篇
  1973年   14篇
排序方式: 共有8204条查询结果,搜索用时 15 毫秒
81.
The inactivation and sublethal injury of Escherichia coli O157:H7, Campylobacter jejuni and Pseudomonas aeruginosa at three temperatures (22 °C, 4 °C and −18 °C) were studied using traditional microbiological tests and mid-infrared spectroscopy (4000-400 cm−1). Bacteria were cultivated in diluted nutrient matrices with a high initial inoculation (∼107 CFU/ml) levels. Both E. coli O157:H7 and P. aeruginosa survived and cell numbers increased at 22 °C for 5 days while C. jejuni numbers decreased one log10 CFU/ml. A two log CFU/ml decrease was observed for the three pathogens held at 4 °C for 12 days. C. jejuni survived poorly following incubation at −18 °C for 20 days while levels of E. coli O157:H7 and P. aeruginosa remained high (104 CFU/ml). Temperature stress response of microbes was observed by infrared spectroscopy in polysaccharide, protein, lipid, and nucleic acid regions and was strain specific. Level of cold injury could be predicted using cluster, discriminant function and class analog analysis models. Pathogens may produce oligosaccharides and potentially other components in response to stress as indicated by changes in spectral features at 1200-900 cm−1 following freezing.  相似文献   
82.
Rapid CO2 hydrate formation was investigated with the objective of producing a negatively buoyant CO2-seawater mixture under high-pressure and low-temperature conditions, simulating direct CO2 injection at intermediate ocean depths of 1.0-1.3 km. A coflow reactor was developed to maximize CO2 hydrate production by injecting water droplets (e.g., approximately 267 microm average diameter) from a capillary tube into liquid CO2. The droplets were injected in the mixing zone of the reactor where CO2 hydrate formed at the surface of the water droplets. The water-encased hydrate particles aggregated in the liquid CO2, producing a paste-like composite containing CO2 hydrate, liquid CO2, and water phases. This composite was extruded into ambient water from the coflow reactor as a coherent cylindrical mass, approximately 6 mm in diameter, which broke into pieces 5-10 cm long. Both modeling and experiments demonstrated that conversion from liquid CO2 to CO2 hydrate increased with water flow rate, ambient pressure, and residence time and decreased with CO2 flow rate. Increased mixing intensity, as expressed by the Reynolds number, enhanced the mass transfer and increased the conversion of liquid CO2 into CO2 hydrate. Using a plume model, we show that hydrate composite particles (for a CO2 loading of 1000 kg/s and 0.25 hydrate conversion) will dissolve and sink through a total depth of 350 m. This suggests significantly better CO2 dispersal and potentially reduced environmental impacts than would be possible by simply discharging positively buoyant liquid CO2 droplets. Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration.  相似文献   
83.
A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.  相似文献   
84.
Under anaerobic conditions, such as those typically found in buried sediments, the primary metabolic pathway for polychlorinated biphenyls (PCBs) is reductive dechlorination in which chlorine removal and substitution with hydrogen by bacteria result in a reduced organic compound with fewer chlorines. Vertical sediment cores were collected from Lake Hartwell (Pickens County, SC) and analyzed in 5-cm intervals for 107 PCB congeners in a total of more than 280 samples from 18 sediment cores and surface samples. This paper reports on extensive PCB dechlorination measured in Lake Hartwell sediments and the characterization of dechlorination end-member (EM) patterns using chemical forensic methods. PCB congener fingerprinting and a multivariate receptor modeling method, polytopic vector analysis (PVA), were used for identification and characterization of weathered and dechlorinated PCB congener patterns. Dechlorination resulted in a substantial shift in buried sediments from tetra- through decachlorobiphenyl congeners to mono- through trichlorobiphenyl congeners. Mono- through trichlorobiphenyls comprised approximately 80% of the PCBs in buried sediments that underwent maximum dechlorination as compared to approximately 20% in surface sediments. The major concentration decreases were seen in the tetra- through hexachlorobiphenyl homologues, which accounted for over 90% of the dechlorination. Octa- through decachlorobiphenyl congeners also were dechlorinated, but their overall contribution to dechlorination was relatively small due to their low initial concentrations (< 5%). The net accumulation of 2-CB, 2,2'/2,6-DCBs, 2,4'-DCB, 2,2',4-TCB, and 2,2',6-TCB at Lake Hartwell matched characteristic PCB dechlorination products reported in the literature, such as those for Processes M, Q, and C; and the persistence of tetrachlorobiphenyls (TeCBs) that contained 24- and 25-congener groups resembled dechlorination Processes H or H'. Although dechlorination tended to be very extensive in most of the cores, it was not always consistent from core to core or at various depth intervals within a single core. The reason for this variability in dechlorination extent could not be determined from the existing data and did not appear to correlate with such factors as PCB concentration, total organic carbon, or age. The authors used fingerprinting analysis and a PVA multivariate receptor model as exploratory data analysis tools to characterize PCB sources and their alteration patterns. Dominant sources and alteration patterns were determined in this large data set by comparing PVA EM patterns with known source patterns (i.e., Aroclors or Aroclor mixtures) and literature-reported alteration patterns. PVA also afforded an opportunity to characterize the vertical and lateral distributions of the weathered and unweathered PCB source patterns and dechlorination patterns, a task that would have been much more difficult to accomplish through comparison of chromatograms alone.  相似文献   
85.
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.  相似文献   
86.
Wet agglomeration mechanisms developing in low shear mixers have been described considering a fractal morphogenesis process that links the median size of the agglomerates with their solid volume fraction via a fractal dimension. It appears fundamental to integrate the polydispersity of the generated structures (nuclei, agglomerates, dough pieces) in the analysis of the agglomeration process in order to approach the industrial problems. The objective of this study is to correlate the influence of the physicochemical characteristics of several liquid binders, on the fractal agglomeration mechanisms. To do so, we considered the values of the fractal model parameters. The obtained results confirmed that semolina wet agglomeration follows a fractal morphogenesis for the different applied liquid binders. Our results also showed a marked influence of the studied physicochemical properties of the liquid binder on the value of the fractal model parameters. During wet agglomeration in low shear mixers, the mechanisms implied during agglomeration (wetting, nucleation and growth) do not occur consecutively, but they coexist throughout at each water contents.  相似文献   
87.
Multilayer emulsions containing lipid droplets coated by lactoferrin (LF) - anionic polysaccharide layers have improved resistance to environmental stresses (such as pH, salt, and temperature), but their behavior within the gastrointestinal tract (GIT) is currently unknown. The objective of this research was therefore to monitor changes in the physicochemical properties and digestibility of these systems under simulated GIT conditions. Primary emulsions (5% corn oil, 0.5% LF) were prepared using a high-pressure homogenizer. Secondary emulsions (5% corn oil, 0.5% LF, 0.5% polysaccharide) were prepared by incorporating alginate, low methoxyl pectin (LMP) or high methoxyl pectin (HMP) into primary emulsions. Emulsions were then subjected to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) conditions in sequence. LF, LF-LMP and LF-HMP emulsions were stable to droplet aggregation in the stomach but aggregated in the small intestine, whereas LF-alginate emulsions aggregated in both the stomach and small intestine. The presence of a dietary fiber coating around the initial lipid droplets had little influence on the total extent of lipid digestion in SIF, but LF-alginate emulsions had a slower initial digestion rate than the other emulsions. These results suggest that the dietary fiber coatings may become detached in the small intestine, or that they were permeable to digestive enzymes. Pepsin was found to have little influence on the physical stability or digestibility of the emulsions. The knowledge obtained from this study is important for the design of delivery systems for encapsulation and release of lipophilic bioactive ingredients.  相似文献   
88.
The analytical studies used to investigate foodborne outbreak are mostly case-control or retrospective cohort studies. However, these studies can be complex to perform and susceptible to biases. This article addresses basic principles of epidemiology, probability, and the use of case-case design to identify the source of an Escherichia coli O157:H7 outbreak linked to raw milk cheese consumption in Quebec, Canada; a small number of cases with the same pulsed-field gel electrophoresis (PFGE) profile were involved. Between 4 December 2008 and 15 January 2009, a cumulative total of 16 E. coli O157:H7 cases with the same PFGE profile were reported to Quebec public health authorities. Among the first six cases reported, three had consumed raw milk cheese from the same producer (cheese A). Raw milk cheese is consumed by about 2 % of the Quebec population. By using the exact probability calculation, it was found that a significantly higher proportion of E. coli O157:H7 cases (with the specific PFGE profile) than expected had consumed cheese A (P < 0.001). These computations were updated during the course of the investigation to include subsequent cases and gave the same results. A case-case study corroborated this result. This article considers alternative statistical and epidemiological approaches to investigate a foodborne outbreak-in particular with an exact probability calculation and case-case comparisons. This approach could offer a fast and inexpensive alternative to regular case-control studies to target public health actions, particularly during a foodborne outbreak.  相似文献   
89.
This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).  相似文献   
90.
Analyzing the radiocarbon ((14)C) content of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter can provide estimates on the source contributions from biomass burning versus fossil fuel. The relative importance of these two sources to ambient PAHs varies considerably across regions and even countries, and hence there is a pressing need to apportion these sources. In this study, we advanced the radiocarbon analysis from bulk carbon to compound class specific radiocarbon analysis (CCSRA) to determine Δ(14)C and δ(13)C values of PAHs in PM(2.5) samples for investigating biomass burning and fossil fuel source contributions to PAHs from one of the Southeastern Aerosol Research and Characterization (SEARCH) sites in North Birmingham (BHM), Alabama during winter (December 2004-February 2005) and summer (June-August 2005) by accelerator mass spectrometry. To compare our ambient samples to known sources, we collected and analyzed fenceline samples from the vicinity of a coke plant in BHM. As expected, PAHs from the coke plant fenceline samples had very low radiocarbon levels. Its Δ(14)C varied from -990 to -970‰, indicating that 97 to 99% were of fossil source. PAHs in the ambient PM(2.5) had Δ(14)C from -968 to -911 ‰, indicating that 92-97% of PAHs were from fossil fuel combustion. These levels indicated the dominance of fossil sources of ambient PAHs. The radiocarbon level of ambient PAHs was higher in winter than in summer. Winter samples exhibited depleted δ(13)C value and enriched Δ(14)C value because of the increased contribution of PAHs from biomass burning source. However, biomass burning contributed more to heavier PAHs (modern source accounting for 6-8%) than lighter ones with a modern contribution of 3%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号