首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
化学工业   28篇
金属工艺   1篇
机械仪表   4篇
建筑科学   4篇
能源动力   9篇
轻工业   27篇
水利工程   1篇
无线电   4篇
一般工业技术   30篇
冶金工业   7篇
原子能技术   1篇
自动化技术   15篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
121.
This study aims to clarify the effect of adsorbability, desorbability, biodegradability and activated carbon type on the extent of bioregeneration in the treatment of phenol. For this purpose, four different activated carbon types; one thermally activated and one chemically activated powdered carbon (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Adsorption isotherms showed that the thermally activated carbons, either in powdered or granular form, were better adsorbers for phenol than the chemically activated ones. However, adsorption was more irreversible in the case of thermally activated carbons. Bioregeneration of chemically activated carbons were found to be higher in accordance with their higher reversibility of adsorption showing that bioregeneration was controlled by the reversibility of adsorption. Bioregeneration efficiencies for the thermally activated carbons were much higher than their efficiencies of total desorbability. This indicated that some exoenzymatic reactions might have occurred so that phenol was bioregenerated more than expected.  相似文献   
122.
The aim of this study is to investigate the thermodynamics of steam assisted, high-pressure conversions of model components of bio-oil – isopropyl alcohol, lactic acid and phenol – to synthesis gas (H2 + CO) and to understand the effects of process variables such as temperature and inlet steam-to-fuel ratio on the product distribution. For this purpose, thermodynamic analyses are performed at a pressure of 30 bar and at ranges of temperature and steam-to-fuel ratio of 600–1200 K and 4–9, respectively. The number of moles of each component in the product stream and the product composition at equilibrium are calculated via Gibbs free energy minimization technique. The resulting optimization problems are solved by using the Sequential quadratic programming method. The results showed that all of the model fuels reached near-complete conversions to H2, CO, CO2 and CH4 within the range of operating conditions. Temperature and steam-to-fuel ratio had positive effects in increasing hydrogen content of the product mixture at different magnitudes. Production of CO increased with temperature, but decreased at high steam-to-fuel ratios. Conversion of model fuels in excess of 1000 K favored molar H2/CO ratios around 2, the synthesis gas composition required for Fischer–Tropsch and methanol syntheses. It was also possible to adjust the H2/CO ratios and the amounts of CH4 and CO2 in synthesis gas by steam-to-fuel ratio, the value depending on temperature and the fuel type. Product distribution trends indicated the presence of water–gas shift and methanation equilibria as major side reactions running in parallel with the steam reforming of the model hydrocarbons.  相似文献   
123.
Dynamic and static magnetizations of an exchange biased bilayer system which is constructed as a proximity of a CoO layer on an Fe-layer grown on the (100) oriented MgO substrate by ion beam sputtering technique have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM) techniques. The room-temperature FMR measurements reveal that the Fe layer is epitaxially grown on MgO substrate with four-fold magnetocrystalline anisotropy and the hard magnetization axis of the sample is the [100] crystallographic directions of MgO substrate. We have determined the g-value, effective magnetization, magnetocrystalline anisotropy constants and contributions to FMR linewidth due to the intrinsic Gilbert damping and inhomogeneity of magnetization by using Landau–Lifshitz–Gilbert (LLG) equation. We observed an unusual FMR line shape attributed to impedance switching of resonance cavity and complex component of conductivity of sample system. The low-temperature FMR measurement shows asymmetric hysteretic behavior of resonance field related to magnetic coupling of ferromagnetic and antiferromagnetic layers. From both FMR and VSM measurements between 10–300 K, the magnetocrystalline anisotropy is observed to dominate above blocking temperature, while unidirectional anisotropy is observed to dominate below blocking temperature over internal magnetic anisotropy. FMR spectra have a comparatively small linewidth between 40–100 Oe, which indicates to a high crystallinity of the Fe film. Gilbert constant was calculated as 0.007 from the linewidth fitting of FMR spectra. This small value is a suitable for reducing the critical switching current used in magnetic tunneling junction. Detailed exchange bias studies were carried out for hard and easy axis of the sample in the temperature range of 10–300 K. From both low-temperature FMR and VSM measurements, the blocking temperature of the system was determined as ~60 K.  相似文献   
124.
The artificial neural network (ANN) approach is generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. In this paper, an application of the ANN has been presented for a PID controlled heat pump dryer. In PID controlled heat pump dryer, air velocity changed according to the temperature value which is set in process control device. Heat pump dryer was tested drying of hazelnut at 40 °C, 45 °C and 50 °C drying air temperatures. By training the experiment results with ANN, drying air velocities, moisture content of hazelnuts and total drying time were predicted for 42 °C, 44 °C, 46 °C and 48 °C drying air temperatures.  相似文献   
125.
Unsal M  Aktaş N 《Meat science》2003,63(2):235-239
Edible sheep tail fat was effectively fractionated by an acetone crystallization. Each of the fractions and filtrates were analyzed for melting point, refractive index, iodine value, fatty acid composition, and characterized by differential scanning calorimetry. Fatty acid analysis indicated that as the fractionation temperature decreased, the concentration of unsaturated fatty acids in the fractions increased. The liquid fraction had a differential scanning calorimetry melting curve similar to commercial salad oil and the curve of one of the filtrates resembled that of cocoa butter.  相似文献   
126.
Drying is an energy intensive and time consuming process, so reducing amount of demanded energy and drying time are important issues for drying technology. The main aim of this paper is to analyze the drying characteristics of mint leaves in a new cylindrical form of drying chamber at low drying air temperature and by emphasizing on energy analysis. The dryer consists of air source heat pump system, air to air heat recovery unit and proportional temperature controller. Experiments were performed at 2, 2.5 and 3 m/s air velocities and at 35 °C cabin inlet air temperature. Mint leaves were dried from 9 g water/g dry matter to 0.1 g water/g dry matter. Designed drying chamber, with three stainless steel cylinders in circular nested form, has a positive effect for drying technology. This system has some advantages such as: drying of product by accessing a uniform air flow and preventing spread of light weight samples like mint leaves over drying system. Calculations based on experimental data show that in the best case, by consuming 3.164 kWh energy in a heat pump with 3.94 coefficients of performance, 4.56 kWh energy had been gained by heat recovery unit. Average 48% of energy was saved by means of heat recovery unit. Effective moisture diffusivity values varied from 3.50E?11 to 5.88E?11 for mint leaves.  相似文献   
127.
Subcritical water extraction (SWE) is a technique based on the use of water as an extractant, at temperatures between 100 and 374 °C and at a pressure high enough to maintain the liquid state. SWE provides higher selectivities, low cost, and shorter extraction times. In this study, phenolic compounds in flaxseed (Linum usitatissimum L.) meal sticks were extracted with subcritical water using accelerated solvent extractor. For this aim, the interactions between temperature (160, 170, and 180 °C) and extraction time (5, 15, 30, and 60 min) for subcritical water extraction of SDG lignan, total phenolics, and total flavonoids from flaxseed meal sticks were investigated. The highest extraction yield of SDG lignan (77.01 %) in subcritical water extracts was determined at 160 °C for 60 min. However, high extraction yields were obtained as 70.67 and 72.57 % at 170 and 180 °C for 15 min, respectively. Also, the highest extraction yield of total phenolics (70.82 %) and total flavonoids (267.14 %) were determined at 180 °C for 15 min. Besides, high correlations between SDG lignan–total phenolics, SDG lignan–total flavonoids, and total phenolics–total flavonoids were obtained from 0.86 to 1 in water extracts.  相似文献   
128.
Thermal resistance of the fabrics is one of the decisive parameters in terms of comfort; however it can change due to wetting. Therefore, thermal resistance of wetted fabric is important for comfort performance of garments. In recent years, artificial neural networks (ANN) have been used in the textile field for classification, identification, prediction of properties and optimization problems. ANNs can predict the fabric thermal properties by considering the influence of all fabric parameters at the same time. In this study, ANNs were used to predict thermal resistance of wetted fabrics. For this aim, two different architectures were experienced and high regression coefficient (R2) between the predicted (training and testing) and observed thermal resistance values were obtained from both models. The obtained regression coefficient values were over 90% for both models. Then it can be said that ANNs could be used for predicting thermal resistance of wetted fabrics successfully.  相似文献   
129.
The aim of this study was to investigate the effect of material type (artichoke leave, lemon peel, flaxseed meal), extraction temperature (50, 100, 120, 140, 160, 180, 200 °C) and static extraction time (5, 15, 30, 45 min) on 5-hydroxymethylfurfural (5-HMF) formation during subcritical water extraction. 5-HMF content of artichoke leave and lemon peel extracts increased 7.2 and 26.1 times with the rise of extraction temperature from 160 to 180 °C for 5 min during subcritical water extraction, respectively. Besides, 5-HMF content of artichoke leave, lemon peel and flaxseed meal extracts increased 1.4, 2.0 and 4.5 times as static extraction time increased from 15 to 45 min at 180 °C during subcritical water extraction, respectively. The highest 5-HMF content of artichoke leave and lemon peel extracts were obtained as 58.83 and 231.21 mg/L at 180 °C and 45 min, respectively. However, for flaxseed meal, the highest 5-HMF content (222.94 mg/L) was obtained at 200 °C and 15 min during subcritical water extraction.  相似文献   
130.
A simple analytical procedure was developed for the quantitation of benzo(a)pyrene in human breast milk using solid phase extraction (SPE) combined with high performance liquid chromatography. Before the chromatographic process, SPE, including C18 functional groups in silicagel cartridges, was conducted for sample preparation. A C18 column (100×4.6 mm id, 3 μm particle size) was used with acetonitrile:water (80:20) as the mobile phase at a flow rate 1mL/min at 30°C. Fluorimetric detection was performed for excitation and emission at 290 and 406 nm, respectively. It was observed that the calibration curve was linear over the range of 0.5–80 ng/mL. The limit of detection and limit of quantitation were found to be 0.5 and 1.07 ng/mL, respectively. Intraday and interday relative standard deviation values were less than 5.15%. Moreover, the newly developed method provides a fast, simple, cost effective, and sensitive assay to detect an important carcinogen substance, benzo(a)pyrene, in human breast milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号