首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   21篇
  国内免费   2篇
电工技术   51篇
综合类   1篇
化学工业   190篇
金属工艺   41篇
机械仪表   18篇
建筑科学   34篇
能源动力   39篇
轻工业   71篇
水利工程   2篇
石油天然气   3篇
无线电   157篇
一般工业技术   241篇
冶金工业   954篇
原子能技术   32篇
自动化技术   84篇
  2022年   12篇
  2021年   8篇
  2020年   7篇
  2019年   13篇
  2018年   16篇
  2017年   13篇
  2016年   14篇
  2015年   10篇
  2014年   31篇
  2013年   33篇
  2012年   30篇
  2011年   39篇
  2010年   42篇
  2009年   50篇
  2008年   54篇
  2007年   40篇
  2006年   34篇
  2005年   29篇
  2004年   35篇
  2003年   33篇
  2002年   36篇
  2001年   34篇
  2000年   20篇
  1999年   36篇
  1998年   297篇
  1997年   192篇
  1996年   154篇
  1995年   83篇
  1994年   71篇
  1993年   62篇
  1992年   22篇
  1991年   30篇
  1990年   33篇
  1989年   28篇
  1988年   28篇
  1987年   26篇
  1986年   15篇
  1985年   16篇
  1984年   6篇
  1983年   8篇
  1982年   17篇
  1981年   6篇
  1980年   20篇
  1979年   12篇
  1978年   10篇
  1977年   30篇
  1976年   57篇
  1973年   4篇
  1971年   3篇
  1965年   3篇
排序方式: 共有1918条查询结果,搜索用时 875 毫秒
71.
This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen’s macro-strain over time was investigated based on the results obtained by the DIC measurement.  相似文献   
72.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   
73.
Sequential anodic and cathodic pulse voltages were applied on anodised Al micro-electrodes in alkaline silicate electrolyte to explore the role of cathodic pulse in AC or bipolar plasma electrolytic oxidation (PEO) process. SEM observation was carried out to observe the sites of anodic and cathodic breakdown and their morphologies. The prior anodic breakdown accelerated the cathodic breakdown at ?50 V, and the acceleration was associated with the preferential cathodic breakdown at the anodic breakdown sites. However, the succeeding anodic breakdown during applying anodic pulse of 420 V for 2 ms was highly suppressed at the cathodic breakdown sites. This would randomise the anodic breakdown sites. Such role may contribute to the formation of rather uniform coatings on aluminium in this electrolyte without large discharge channels when larger cathodic current is applied with respect to the anodic current in AC PEO.  相似文献   
74.
In-situ and transient visualizations of the packing structure of a hydrogen storage alloy bed are carried out using an X-ray computed tomography (CT) system. The packing structure is clearly observed on the microscale using the CT system. When the alloy bed is subjected to hydrogen absorption–desorption cycles, the pulverization progresses from the lower to the upper regions of the bed. After several hydrogen absorption–desorption cycles, the packing structure in the lower region of the bed changes and the microstructural void decreases slightly. Based on these results, we propose a pulverization mechanism of the packed bed in which the friction between particles affects the pulverization process.  相似文献   
75.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   
76.
以对溴苯酚为原料,经四步反应合成一种取代苯乙炔单体4-乙炔基-(2,6)二羟甲基-1-十二烷基酚醚。利用手性的铑催化剂引发聚合,得到高分子量的螺旋聚合物,通过GPC和CD对分子量和螺旋结构进行表征。最后通过光环化反应高效合成了环状三聚体,并通过1HNMR和GPC确认其化合物结构。  相似文献   
77.
On the basis of the observation of gas bubbles evolved by electrolysis, a two-dimensional vertical model cell composed of electrodes with open parts for releasing gas bubbles to the back side is proposed. The model cell consists of two layers. One layer forms a bubble curtain with a maximum volume fraction of gas bubbles in the vicinity of the working electrode with open parts. The other. being located out of the bubble layer, is a convection layer with a small volume fraction distributed in the vertical direction under forced convection conditions. The cell resistance and the current distribution were computed by the finite element method when resistivity in the back side varied in the vertical direction along the cell. The following three cases for overpotential were considered: no overpotential, overpotential of the linear type and overpotential of the Butler-Volmer type. It was found that the cell resistance was determined not only by the interelectrode gap but also by the percentage of open area and in some cases by the superficial surface area. The cell resistance varied only slightly with the distribution of the bubble layer in the back side.Nomenclature b linear overpotential coefficient given byb=/i - C proportionality constant given by Equation 15 - d 1 distance between front side of working electrode and separator - d 2 thickness of separator - F Faraday constant - I total current per half pitch - i current density at working electrode - i 0 exchange current density - L length of a real electrolysis cell - n number of electrons transferred in electrode reaction - O p percentage of open area given by Equation 1 - p pitch, i.e. twice the length of the unit cell, defined by 2(BC) in Fig. 4 - q thickness of bubble curtain, defined by (AM) in Fig. 4 - R gas constant - r t total cell resistance - r unit-cell resistance defined by (V – V eq)/I - r rs residue ofr from sum ofr 0 andr - r 0 ohmic resistance of solution when0 p=0 - r resistance due to overpotential when0 p=0 - s electrode surface ratio or superficial surface area given by Equation 2 for the present model - T absolute temperature - t thickness of working electrode defined by EF in Fig. 4 - V cell voltage - V eq open circuit potential difference between working and counter electrodes - solution velocity in cell - 0 solution velocity at bottom of cell - w width of working electrode, defined by 2(DE) in Fig. 4 - x abscissa located on cell model - y ordinate located on cell model - anodic transfer coefficient - linear overpotential kinetic parameter defined byb/[bc(p/2)] - d infinitesimally small length on the boundary - volume fraction of gas bubbles in cell - dimensionless cell voltage defined bynF(V – V eq)/RT - overpotential at working electrode - Butler-Volmer overpotential kinetic parameter defined by [nFi 0bc(p/2)]/RT - coordinate perpendicular to boundary of model cell - 1 resistivity of bubble-free solution - 2 resistivity of separator - bc resistivity of bubble curtain - potential in cell  相似文献   
78.
A soluble and stable one-handed helical conjugated polymer without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer having two hydroxyl groups followed by desubstitution of the chiral groups in a solid membrane state. The reason for the success was the polymer reaction was carried out in the membrane state. This is an alternative method to obtain such a unique chiral polymer which was obtained only by the helix-sense-selective polymerization (HSSP) we reported before. In addition the efficiency of the chiral induction was higher than that of the HSSP. It is interesting that the “Membrane state” acted like as if a protecting group.  相似文献   
79.
Molecular dynamics (MD) simulations of large argon clusters impacting on silicon solid targets were performed in order to study the transient process of crater formation and sputtering. The MD simulations demonstrate that the initial momentum of incident cluster is transferred to target surface atoms through multiple collision mechanism, where the initial momentum, which is along to the surface normal before impact, is deflected to lateral direction. This momentum transfer process was analyzed by the calculation of the velocity at the crater edge (the interface between cluster and target). In the case of Ar1000 cluster impact on Si(1 0 0) target at low energy per atom less than 40 eV/atom, the maximum value of lateral velocity of the crater edge increases in proportional to the velocity of incident cluster atoms. On the other hand, the crater edge velocity saturates over 40 eV/atom of incident energy per atom. In this case, the whole of constituent cluster atoms are implanted into the target and expand in both lateral and reflective directions at the subsurface region of the target. These MD simulations demonstrated that this collisional process result in the high yield sputtering of the target atoms.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号