首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   32篇
  国内免费   6篇
电工技术   2篇
综合类   1篇
化学工业   125篇
金属工艺   2篇
机械仪表   15篇
建筑科学   13篇
能源动力   12篇
轻工业   47篇
石油天然气   2篇
无线电   37篇
一般工业技术   69篇
冶金工业   15篇
自动化技术   55篇
  2024年   3篇
  2023年   9篇
  2022年   42篇
  2021年   42篇
  2020年   27篇
  2019年   20篇
  2018年   23篇
  2017年   21篇
  2016年   27篇
  2015年   15篇
  2014年   11篇
  2013年   30篇
  2012年   8篇
  2011年   18篇
  2010年   21篇
  2009年   12篇
  2008年   15篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有395条查询结果,搜索用时 0 毫秒
331.
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.  相似文献   
332.
High-redox potential laccases (HRPLs) from white-rot fungi are versatile biocatalysts whose practical use is highly dependent on their thermostability. In this work, an evolved HRPL variant was subjected to structure-guided evolution to improve its thermostability. We first selected several surface flexible loops in the laccase structure by inspecting them through molecular dynamics and an analysis of B-factors. The resulting segments were grouped into three MORPHING (Mutagenic Organized Recombination Process by Homologous In vivo Grouping) blocks, which were constructed in Saccharomyces cerevisiae and explored at high temperatures. This evolution process gave rise to a double mutant that showed a half-life at 70°C enhanced by 31 min with an optimum temperature for activity of 75°C and similar kinetic parameters. The Ser264Lys and Ser356Asn mutations modified the contacts established between these residues and those that surround them, altering the surface loops and thereby the enzyme properties.  相似文献   
333.
334.
Curcumin (CUR) has been investigated for its poor accessibility to a site of action or absorption and rapid metabolism to cope with the limited medication and cure applications. This article reviews numerous approaches, such as encapsulated surfactant/polymeric micelles, liposomes, micro/nano-spheres, nano-suspensions/composites, nanocomplex, films, and hydrogels for effective transfer of CUR to target sites. Chitosan (CS), and chitosan derivatives have been found to enhance therapeutic efficacy of CUR. CS/modified-CS based alginate, cyclodextrin, starch, dextran sulfate, ZnO, phytosomes, and poly(butyl) cyanoacrylate drug delivery matrices improved bioavailability, prolonged drug loading and permeability, sustained release rate, improved solubility and stability (prevent metabolic degradation) of CUR, consequently promoting various clinical applications. CS based polysaccharide, protein, and metal oxide drug delivery nano formulations advantageously participated to improve biological activities of CUR. We have attempted to summarize these delivery approaches, and reviewed future trends/strategies to permit the introduction of CUR as practical therapeutic drug.  相似文献   
335.
There is an increasing interest in enzymes that catalyze the hydroxylation of naphthalene under mild conditions and with minimal requirements. To address this challenge, an extracellular fungal aromatic peroxygenase with mono(per)oxygenase activity was engineered to convert naphthalene selectively into 1‐naphthol. Mutant libraries constructed by random mutagenesis and DNA recombination were screened for peroxygenase activity on naphthalene together with quenching of the undesired peroxidative activity on 1‐naphthol (one‐electron oxidation). The resulting double mutant (G241D‐R257K) obtained from this process was characterized biochemically and computationally. The conformational changes produced by directed evolution improved the substrate's catalytic position. Powered exclusively by catalytic concentrations of H2O2, this soluble and stable biocatalyst has a total turnover number of 50 000, with high regioselectivity (97 %) and reduced peroxidative activity.  相似文献   
336.
337.
338.
The cytoskeleton plays a central part in spatial organization of the plant cytoplasm, including the endomebrane system. However, the mechanisms involved are so far only partially understood. Formins (FH2 proteins), a family of evolutionarily conserved proteins sharing the FH2 domain whose dimer can nucleate actin, mediate the co-ordination between actin and microtubule cytoskeletons in multiple eukaryotic lineages including plants. Moreover, some plant formins contain transmembrane domains and participate in anchoring cytoskeletal structures to the plasmalemma, and possibly to other membranes. Direct or indirect membrane association is well documented even for some fungal and metazoan formins lacking membrane insertion motifs, and FH2 proteins have been shown to associate with endomembranes and modulate their dynamics in both fungi and metazoans. Here we summarize the available evidence suggesting that formins participate in membrane trafficking and endomembrane, especially ER, organization also in plants. We propose that, despite some methodological pitfalls inherent to in vivo studies based on (over)expression of truncated and/or tagged proteins, formins are beginning to emerge as candidates for the so far somewhat elusive link between the plant cytoskeleton and the endomembrane system.  相似文献   
339.
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号